
Lee et al. Journal of Computational Surgery 2014, 1:12
http://www.computationalsurgery.com/1/1/12
METHODOLOGY Open Access
Towards real-time communication between
in vivo neurophysiological data sources and
simulator-based brain biomimetic models
Giljae Lee1*, Andréa Matsunaga1, Salvador Dura-Bernal3, Wenjie Zhang1, William W Lytton3,4,5,6,7,8,
Joseph T Francis3,6,7,8 and José AB Fortes1,2
* Correspondence: giljael@acis.ufl.edu
1Department of Electrical and
Computer Engineering, University of
Florida, P.O. Box 116200, 216 Larsen
Hall, Gainesville 32611, FL, USA
Full list of author information is
available at the end of the article
©
L
p

Abstract

Development of more sophisticated implantable brain-machine interface (BMI) will
require both interpretation of the neurophysiological data being measured and
subsequent determination of signals to be delivered back to the brain. Computational
models are the heart of the machine of BMI and therefore an essential tool in both
of these processes. One approach is to utilize brain biomimetic models (BMMs) to
develop and instantiate these algorithms. These then must be connected as hybrid
systems in order to interface the BMM with in vivo data acquisition devices and
prosthetic devices. The combined system then provides a test bed for neuroprosthetic
rehabilitative solutions and medical devices for the repair and enhancement of
damaged brain. We propose here a computer network-based design for this
purpose, detailing its internal modules and data flows. We describe a prototype
implementation of the design, enabling interaction between the Plexon Multichannel
Acquisition Processor (MAP) server, a commercial tool to collect signals from
microelectrodes implanted in a live subject and a BMM, a NEURON-based model
of sensorimotor cortex capable of controlling a virtual arm. The prototype
implementation supports an online mode for real-time simulations, as well as an
offline mode for data analysis and simulations without real-time constraints, and
provides binning operations to discretize continuous input to the BMM and
filtering operations for dealing with noise. Evaluation demonstrated that the
implementation successfully delivered monkey spiking activity to the BMM
through LAN environments, respecting real-time constraints.

Keywords: Computational neuroscience; Neuroprosthetics; Brain-machine
interfaces; Biomimetic models
Background
Translation of our increasing knowledge of brain signals into treatment of patients

with brain damage or with disconnections between brain and body requires the

ability to read and transmit information bi-directionally between brain electrodes

(or other probes) and a neuroprosthetic processor. This is the realm of brain-

machine interface (BMI) and brain-computer interface (BCI), primarily distin-

guished by whether connecting to a relatively limited processor maintained on the

body for managing a prosthetic or connecting to an external computer for the
2014 Lee et al.; licensee Springer. This is an Open Access article distributed under the terms of the Creative Commons Attribution
icense (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium,
rovided the original work is properly credited.

mailto:giljael@acis.ufl.edu
http://creativecommons.org/licenses/by/4.0

Lee et al. Journal of Computational Surgery 2014, 1:12 Page 2 of 23
http://www.computationalsurgery.com/1/1/12
purpose of direct communication between the brain and a computer. It has been

suggested that in the upcoming years, it will be important for neurosurgeons to

understand and integrate BCI technology and its clinical applications into their

field [1].

Currently, most of the algorithms utilized in BMI and BCI are based on low-

dimensional interpretations of brain signals, typically based on rate determinations

integrated over hundreds of milliseconds (ms) or seconds. By contrast, we are

developing biomimetic brain models (BMMs) that attempt to replicate some of the

attributes of brain signaling - specifically the spiking activation of the individual neu-

rons. This increases the bandwidth requirements for communication since we now

have the possibility of utilizing all the information from as many neurons as can be

recorded (currently order 100) with firing rates of over 100 Hz. Learning can be

incorporated into the BMM. This allows the hybrid BMM brain system to produce a

coadapting symbiotic relation where both the brain and the BMM learn at the same

time and adapt to each other [2].

Using data from a non-human primate, we are developing a test bed for the devel-

opment of BMI/BCI neuroprosthetic rehabilitative solutions and medical devices

for the repair and enhancement of neuronal systems. We have implemented BMMs

capable of replicating many experimental paradigms, such as sensorimotor learning

experiments [3-5] or cellular microstimulation [6,7]. They are able to accurately re-

produce physiological properties observed in vivo [4,8], including firing rates and

stimulus-induced modulations, and capture large-scale emerging properties such as

local field potentials [9]. We have demonstrated that these BMMs, running in high-

performance computers, can produce commands to control prosthetic devices in

real time [10]. Here we aim at bridging the missing link by connecting the BMMs

directly with animal electrophysiological recordings.

The proposed system is somewhat analogous to dynamic clamp [11], which is used to

interface one or several single cells in vitro with a computer or analog device to simulate

dynamic processes such as membrane or synaptic currents. However, scaling up the sys-

tem to the next level, where a brain neuronal network is connected to biomimetic neur-

onal network model, posed a more challenging task.

Large-scale spiking neuron models of brain function are developed using neural

network simulators such as NEURON, NEST, and GENESIS [12]. Existing BCI solu-

tions do not support such simulator-based models. Instead, most existing solutions

interface BCIs with artificial neural networks. Several general frameworks, systems,

and software toolkits exist for this purpose: Virtual Integration Environment frame-

work [13,14], BCILAB [15], BCI2000 [16], BioFeedback Software development Kit

(BF++) [17], BCI++ [18], OpenVibe [19], BioSig [20] and Cyber-Workstation [21].

They usually support models developed in MATLAB, C++, or both of them. These

tools help users to assemble and to conduct such computational modeling easily and

efficiently for the BCI development providing reusable easy-to-use templates. How-

ever, in order to take advantage of these tools, models must be implemented or

ported in specific languages supported by those tools and utilize simplified non-

spiking neural network models.

In this paper, we address these issues by proposing a design and a prototype imple-

mentation for a network-based interface between an in vivo neurophysiological data

Lee et al. Journal of Computational Surgery 2014, 1:12 Page 3 of 23
http://www.computationalsurgery.com/1/1/12
source and a BMM that is simulating a network of spiking neurons. We specify

the requirements of the system, detail the proposed design, and offer a prototype im-

plementation following the design. The prototype links the PLEXON Multichannel

Acquisition Processor (MAP) server, a commercial tool to collect signals from mi-

croelectrodes implanted in a live subject, to a NEURON-based BMM of sensori-

motor cortex that controls a virtual arm. Our implementation achieves low-latency

interconnection between the data source and the spiking neuronal model.
Methods
Since BMI systems also communicate via a processor, we will use the shorthand

BCI to cover both BCI and BMI systems. In this section, we start by specifying the

requirements of an interface system between neurophysiological data sources and

BMMs. As discussed in the ‘Background’ section, this type of interface, which is not

currently available, would be required to leverage the benefits of realistic large-scale

spiking network models in BCI systems. We subsequently propose a generic or ab-

stract design for a network-based system that meets the specified requirements. In

the last subsection, we provide an example prototype implementation of the pro-

posed generic design, which includes a more technical description of the different

elements involved.
System requirements

Generally, BCI systems must support three functions: data acquisition, data pro-

cessing, and prosthetic control. In this way, system requirements of this study are

similar to previous work in this area. In our case, the design must support the fol-

lowing generic functionality: (1) collection of empirical neurophysiological data

from a live subject - person, monkey, or mouse - facilitated by data acquisition

hardware; (2) delivery of collected data from the sources to the appropriate process-

ing modules via network environments such as a local area network (LAN); (3) ex-

traction of relevant information from the raw empirical data; (4) feeding of data

into a BMM spiking neural network simulator, here NEURON [12]; and (5) support

for both online and offline processing modes. These two processing modes are dis-

cussed further below as they are critical requirements of the system. This prototype

does not deal with; (6) feeding of the BMM output into a physical prosthetic device

(e.g., robot arm), which we have previously dealt with in a study of a real-time inter-

face between a BMM and a robotic arm [10].

In the offline processing mode, all data delivered should be fed to the BMM with-

out real-time constraints. Hence, all the data delivered should be kept in a queue so

that the BMM can use the data as required. On the other hand, in the online process-

ing mode, data delivery and simulation execution must meet real-time requirements.

The BMM can run slower or faster than data acquisition, which occurs in real time.

If the BMM runs faster than the generation of empirical data, it should wait for new

input data to be received. If slower, the data delivered to the BMM must be partially

discarded. Figure 1 illustrates how the offline and online modes should manage,

under different circumstances, the interaction between the received neurophysio-

logical data and the BMM.

Figure 1 Requirements for the interaction between the data source and the BMM. Requirements for
the interaction between the data source and the BMM as a function of the simulation mode.

Lee et al. Journal of Computational Surgery 2014, 1:12 Page 4 of 23
http://www.computationalsurgery.com/1/1/12
Design of a generic network-based interface

We propose an abstract modular design capable of interfacing in vivo data

sources with simulator-based neuronal network models, and more specifically, of

satisfying the system requirements outlined in the previous section. Figure 2 il-

lustrates the modular structure and data flow of the proposed design. Depending
Figure 2 Modules structure and data flows of the design. The design consists of three modules: in silico
interface modules, interconnection module, and in vivo interface module. There are three data flows: from a
live subject to a simulator, from the simulator to a prosthetic device, and from the model execution
configuration module to other modules in order to set up the simulation environment with the user
configuration parameters.

Lee et al. Journal of Computational Surgery 2014, 1:12 Page 5 of 23
http://www.computationalsurgery.com/1/1/12
on the scenario, different instantiations of this abstract design are possible, one

of which is provided as an example in the following section and depicted in

Figure 3.

The generic design is composed of in silico interface modules, interconnection

modules, and in vivo interface modules. The in vivo interface modules allow the

system to interact with the data acquisition systems. The in silico interface mod-

ules allow the system to interact with the BMM, set the execution configuration

parameters, and provide tools for model optimization and data analysis. The

interconnection modules manage the information exchange between the in vivo

and in silico interface modules. The design has three data flows. First, data

collected from the subject via data acquisition hardware flows into the system

through the in vivo interface modules. The interconnection modules then

process and send this data to the in silico interface modules, where the data is

fed as input to the BMM simulator. In the second data flow, simulation results

are fed back into the system via the in silico interface and interconnection

modules and are used to control a prosthetic device through the in vivo inter-

face modules. The third data flow propagates the user configuration data to other

modules in the design. The user configuration may include some important pa-

rameters for the interconnection of in vivo experiments and BMMs, such as the

data transmission protocol and data processing options. Though the proposed de-

sign deals with interfacing to physical prosthetic devices [10], its integration into

the framework is considered future work. Each module of the design is described

in detail as follows:
Figure 3 Logic diagram of the prototype implementation. The arrows illustrate the flow for
model configuration and for feeding data from a live subject to a BMM simulator. The targeted
data source is the Plexon MAP server, and the BMM simulator is NEURON. Dotted arrows are the
data flow for model execution configuration. Solid line arrows show the data flow from a live
subject to NEURON.

Lee et al. Journal of Computational Surgery 2014, 1:12 Page 6 of 23
http://www.computationalsurgery.com/1/1/12
Data acquisition interface module

There are many ways to record brain activity from a live subject. Here we focus on

electrophysiology techniques such as single-unit recordings, which measure the

changes in voltage of a single neuron; and local field potentials (LFPs), which pro-

vides a measure of the synaptic currents in a volume of tissue and have been previ-

ously used as input to a BMM [22]. Since different data acquisition methods and

devices may generate data in different formats through different communication pro-

tocols, DIM is responsible for providing an interface between the neurophysiological

data acquisition hardware and the rest of the system. The DIM delivers data received

from a data acquisition device to the data processing module (DPM), which is dis-

cussed next.
Data processing module

The raw data (e.g., spikes) from the DIM may be fed directly into a BMM via the BMM

simulator interface module (SIM) or may require additional operations to extract mean-

ingful information, where the definition of ‘meaningful’ will vary depending on the destin-

ation of the BMM. The DPM is responsible for these additional operations. For example,

the DPM may conduct filtering operations to the input data or perform operations to the

results returned from the BMM simulation in order to convert them into commands that

the prosthetic device understands.
Prosthetic device interface module (PIM)

This module delivers the commands converted from the simulation results as

inputs to the prosthetic device. The type and format of the commands as well

as the communication protocol required to transmit it will depend on the spe-

cific prosthetic device employed. Two examples of control command types for

a robotic arm, a common type of prosthetic device, are incremental control

(small differential changes to each joint of the robot arm) and point-to-point

(specification of absolute endpoints).
BMM simulator interface module (SIM)

The SIM provides an interface to a BMM simulator to interact with the rest of the

system. The SIM is responsible for providing bidirectional communication between

the simulator and the data communication module (DCM), sending data processed

by the DPM as input to the simulator, and delivering simulation results to PIM

through the interconnection modules.
Data communication module (DCM)

In the design, it is critical to enable the transfer of data between the in vivo interface

modules (DIM and PIM) and the module responsible for interfacing with the simula-

tor (SIM) in real time. To minimize transfer latency, dedicated connections or LAN

is recommended. The goal of DCM is to provide real-time data transmission between

the in vivo and in silico interface modules. Prior to transmission by the DCM, data is

processed by the DPM.

Lee et al. Journal of Computational Surgery 2014, 1:12 Page 7 of 23
http://www.computationalsurgery.com/1/1/12
Model execution optimization module (MOM)

The MOM provides optimization functions that interact with the simulators during

execution time, such as cell distribution methods for efficient balance and parallelism

of large network models [23].
Model execution analysis module (MAM)

Some simulators have their own model analysis and visualization tools that users are

already familiar with. However, the MAM allows the inclusion of additional ones, in-

cluding simulation performance measurements such as CPU and memory usage.

Users may access such results by calling functions provided by the MAM from their

simulation code.
Model execution configuration module (MCM)

The MCM provides an easy-to-use configuration interface for setting parameters

in all the modules in the design. For example, the user can select the most ap-

propriate data communication protocol or data processing algorithm for a given

experiment.

Example prototype implementation

In this section, we introduce an example prototype implementation (Figure 3) of

the proposed generic design (Figure 2). A client–server structure was used in our

implementation. The path to feed data from a live subject to the BMM simulation

is implemented using the following modules in the design: the MCM to allow the

user to configure the system, the DIM to receive data from the Plexon MAP ser-

ver, the DPM to process the collected data, the DCM to transmit the data via a

LAN environment, and the SIM to feed the data to the NEURON simulator. PIM,

MAM, and MOM are left as future work. The DIM (client) in the prototype is im-

plemented in MATLAB to use MATLAB application programming interfaces

(APIs) provided for interaction with the Plexon MAP server. The SIM (server) is

implemented in Python so that it can interact with NEURON [24]. Figure 3 illus-

trates our implementation using a logic diagram, which is described in details

below.
NEURON-based BMM

We tested the prototype implementation using a spiking neuronal network model

of sensorimotor cortex [3,4]. The model can be trained to drive a simple kine-

matic two-joint virtual arm in a motor task requiring convergence on a single

target by learning a sensorimotor mapping through reinforcement learning mech-

anisms. Individual neurons were modeled as rule-based dynamical units with

many of the key features found in real neurons, including adaptation, bursting,

depolarization blockade, and voltage-sensitive conductance [25,26]. The model

consists of 288 excitatory and 64 inhibitory cells, each with AMPA, NMDA, and

GABA synapses. These were arranged into three different populations with realis-

tic and anatomical properties: 96 proprioceptive (P) neurons, representing spe-

cific joint angles; sensory neurons, which process inputs from the proprioceptive

Lee et al. Journal of Computational Surgery 2014, 1:12 Page 8 of 23
http://www.computationalsurgery.com/1/1/12
population; and motor neurons, which process input from the sensory cells and

provide output to the virtual arm. The sensory population includes 96 excitatory

sensory cells (ES), 22 fast-spiking sensory interneurons (IS), and 10 low-threshold

spiking sensory interneurons (ILS). The motor population has 96 excitatory

motor (EM), 22 fast-spiking motor interneurons (IM), and 10 low-threshold spik-

ing motor interneurons (ILM). Cells are connected probabilistically with connec-

tion densities and initial synaptic weights varying depending on presynaptic and

postsynaptic cell types. There is synaptic adaptation and training in the biomimetic

model, but they do not require a training or validation dataset as they are based on

the reinforcement learning paradigm. Synaptic weights are modified based on a glo-

bal critic, which provides a reward or punishment signal depending on whether the

army is moving towards or away from the target. After training, the model is evalu-

ated by running the simulation and measuring the distance between the hand end

point and target. More details about the BMM training and evaluation methods can

be found in [4].

The model is able to provide two types of proprioceptive stimulus to the ES

cells: through the P cells for continuous stimuli or through NetStim spike gener-

ator units with location (NSLOC) for discrete stimuli. P cells are implemented as

integrate and fire neurons, and therefore include cell dynamics and internal vari-

ables, such as membrane voltage. When a spike is received from the external

data source, an action potential is artificially triggered in the corresponding P

cell. P cells also potentially allow for continuous stimuli inputs by modulating its

membrane voltage over time. NSLOC units are simple spike generators, known

as NetStim in the NEURON environment, with no internal dynamics. The user

can determine its firing rate or, as in our case, the specific times when spikes

should be generated. In our model, we have extended NetStim to have an x, y, z

location (thus the name NSLOC) in order to facilitate distance-based random

connectivity.

For the evaluation, two prerecorded monkey spiking data files from macaque pri-

mary motor cortex (M1) and dorsal premotor cortex (PMd) are fed to the BMM. The

prototype implementation supports BMMs with continuous P-based and discrete

NSLOC-based inputs. Thus, depending on the input cell type chosen, the discrete

multiunit activity (MUA) values from the prerecorded spiking data are either proc-

essed by the binning operation as explained below for P cells or delivered directly as

discrete input through the NSLOC units. P cell is a simple point process cell, so the

binned input increases the voltage in the P cells, which makes the P cells fire once a

threshold is reached, whereas NSLOC units generate spikes to corresponding ES

cells at the times specified in the inputs.

Data acquisition interface module (DIM)

Plexon is a commercial tool for system neuroscience research. It collects signals from

microelectrodes implanted in the brain of a live subject and provides MATLAB APIs

for user software to connect with the Plexon system and to retrieve signals from it.

The signals consist of channel number, unit number, signal type (e.g., event or spike),

timestamp, and waveforms. The Plexon MAP server pulls signals from a data acqui-

sition device and makes the signals available periodically (e.g., 10 ms). A user

Lee et al. Journal of Computational Surgery 2014, 1:12 Page 9 of 23
http://www.computationalsurgery.com/1/1/12
software can get the signals synchronously or asynchronously depending on APIs

used (available at www.plexon.com). In the prototype implementation, DIM retrieves

spikes from the Plexon MAP server by means of the synchronous API such that the

Plexon MAP server notifies the DIM that spikes are available. The DIM then re-

trieves spikes as a chunk.

For the binning and filtering operations in the DPM described below, the fact

that Plexon MAP server generates out-of-order spikes occasionally is taken into

account, that is, the algorithm considers that the timestamps of all spikes in a

chunk are not guaranteed to be greater than the timestamps of spikes in the pre-

vious chunks. Plexon offers its own offline analysis utilities to sort out-of-order

spikes, but these do not work for online real-time processing. DIM executes a

reordering operation in order to deal with out-of-order spikes and minimizes po-

tential spike loss by adding a delay based on the maximum timestamp K present

in the previous chunk. Larger values of K lead to less potential for spike loss but

add delays that may impact real-time constraints. The choice of a data-driven value for K

was based on empirical experiments that validated it as a good candidate to avoid loss in

the offline mode and to avoid adding too much delay in the online mode. The reordering

algorithm starts once the second spike chunk is received, and its output will be delayed,

with respect to the input, by one spike chunk. Algorithm 1 describes the reordering

operation.
Data Processing Module (DPM)

In our implementation, the DPM performs binning, itemizing and filtering operations.

If the model requires continuous input, the binning operation is executed every single

binning time window as defined by the user (e.g., 100 ms). The binning operation sums

the number of spikes per microelectrode or channel for a given period of time, which

leads to a spike frequency value per channel per bin. Algorithm 2 describes the binning

operation:

http://www.plexon.com

Lee et al. Journal of Computational Surgery 2014, 1:12 Page 10 of 23
http://www.computationalsurgery.com/1/1/12
The PLEXON system acquires 96-channel MUA data recorded by the microelectrodes

implanted in the monkey’s brain. Spikes from each channel are sorted according to their

waveform shape into up to 4 units (1, 2, 3, and 4), with unsorted spikes in unit 0. Addition-

ally, the system sometimes reported simultaneously occurring signals (sync spikes) on mul-

tiple electrodes within a very short interval (e.g., 25 microsecond (us)). Given that there are

many noise sources, such as small displacements in the electrodes, we hypothesized that

such unsorted or sync spikes can be regarded as noise that needs to be filtered out.

Algorithm 3 describes the method for removing sync spikes.

Lee et al. Journal of Computational Surgery 2014, 1:12 Page 11 of 23
http://www.computationalsurgery.com/1/1/12
Since the binning and filtering operations require a certain amount of computation, it is

important to be aware of where they are executed as this may disturb real-time processing.

Depending on whether the operations take place in the DPM of the client or the server, our

implementation provides two options: the Heavyweight Client mode (HWC) and the Light-

weight Client mode (LWC). In the HWC mode, the operations are conducted in the client's

DPM while the server's DPM just receives processed data from the client, and simply

forwards them to the SIM. In the LWC mode, the client's DPM just sends the raw spiking

activity to the server's DPM, where the binning and filtering operations are conducted.

For discrete input simulations, the server's DPM performs the itemizing operation,

instead of the binning operation, in both of the HWC and LWC modes, before pushing a

chunk of spikes to the queue. The itemizing operation divides the chunk of spikes into

groups, each with a fixed number of spikes (e.g., 20) for efficient queue management. For

example, when the fixed number of spikes for a group is 20 and the DPM receives a

chunk which has 30 spikes, the first 20 spikes in the chunk are pushed in the queue as a

group. Then, another group composed of the remaining 10 spikes and another 10 spikes

being assigned an arbitrary value (e.g., zero) is queued. A counter is used to track the

number of real spikes so that the arbitrary valued spikes are never used. The time required

for the itemizing operation is proportional to the size of chunk.

Data communication module (DCM)

The DCM supports two data transmission protocols: the User Datagram Protocol

(UDP) and the Transmission Control Protocol (TCP). UDP is a connectionless trans-

mission protocol that does not guarantee that packets sent reach the destination or that

they are delivered in order [27]. On the other hand, TCP is a connection-oriented

transmission protocol providing reliable and ordered transmission [28]. Ordinarily,

TCP uses Nagle's algorithm to buffer small packets in order to improve efficiency in

transmission. Theoretically, the UDP transmission has less latency than TCP since

UDP does not provide error checking for packets. On a LAN environment where

packet loss occurs rarely, UDP is expected to deliver data without packet loss or reor-

dering issues. However, UDP still can potentially lead to data being lost or out of order.

The DCM provides both the UDP and TCP transmissions, and users can select the appro-

priate protocol according to the network environment. In the DCM, TCP Nagle's algo-

rithm was disabled since buffering small packets may disturb real-time communication.

The client's DCM was implemented in MATLAB using Java network communication

APIs. Data formats are designed to operate with the data received from the in vivo record-

ing system and may be reusable for different acquisition systems. Spike information from

the Plexon MAP server is converted into the designed data format and delivered from the

client to the server. The data format consists of a header and a payload field. The header

field indicates the type of data packet (‘DATA’, ‘NODATA’, or ‘EXIT’). The payload field

contains the binned data and the binning window number for the P-based model; and the

timestamp, channel ID, and unit ID of each spike, for the NSLOC-based model.

BMM simulator interface module (SIM)

In order to feed the BMM running in NEURON with continuous or discrete input,

inter-process communication between the SIM and the BMM was implemented with

an existing first-in, first-out (FIFO) queue facility in Python. This queue provides easy-

Lee et al. Journal of Computational Surgery 2014, 1:12 Page 12 of 23
http://www.computationalsurgery.com/1/1/12
to-use operations such as putting/getting items into/from the queue and locking. For on-

line mode simulations, the queue in SIM supports two cases: either the simulation is

slower or faster than the rate of input of spiking data. The SIM assumes that input data is

coming in real time. Therefore, in online mode, to recognize if the simulation is faster or

slower than real-time, the SIM compares the timestamp in NEURON with the most

recent input. If the difference is greater than a constant value, latency requirement (LR),

which is fixed by user, the simulation is slow, so the SIM discards an item in the queue

and executes the comparison again. Otherwise, the simulation is not slow and the item is

processed. Discarding spikes allows the simulation to catch up with the data rate as less

spikes are processed. We evaluate the consequences of this in the ‘Results’ section. For

offline mode simulations, LR is set to a value bigger than simulation time (e.g., 1,000 s).

To deliver input from the queue to the BMM, we utilized a callback function that is

added to the NEURON event queue and invoked at a specific simulation time by

NEURON. When the function is invoked, it fetches data in the queue and then feeds

the data as input to the BMM. Since the SIM queue contains only valid input data (or-

dered, filtered, and complying with real-time constraints), the callback function just

pulls an input from the queue (if one exists), feeds it to the BMM, and moves the simu-

lation forward. When the queue is empty, the function waits for data to arrive.

Model execution configuration module (MCM)

The MCM provides an initial handshaking protocol to establish connections between

the client and the server and between the client and Plexon MAP server. Through the

initial handshaking protocol, the client and server share configuration information such

as the transmission protocol and where the binning operation takes place. Therefore,

users only need to change parameters or flags in the configuration file located on the

server side. Further details on the parameters found in the configuration file and how

they can be modified by the user are described in [29].

Computational environment

For demonstration of the prototype implementation, the server and client ran in different

machines connected to each other via a LAN environment. We constructed two system

environments: ENV1 and ENV2. ENV1 is composed of two identical machines to conduct

fair comparison of performance between the HWC and LWC modes. ENV2 consists of

machines with better performance than those in ENV1 and arranged in a realistic research

environment, with the machines located in two distinct research laboratories, the in vivo

and in silico labs, and connected via LAN. The Plexon server emulated the in vivo data ac-

quisition on the same machine where the client (DIM) ran. It retrieved spiking activity from

prerecorded Plexon files. Table 1 describes the two computational environments in detail.

Round-trip time (RTT) was measured between two physical machines running the

client and server in ENV1 and ENV2 varying the size of data transmitted (ranging from

64 to 1,032 bytes) according to the processing modes and datasets used in later experi-

ments. The RTT was measured with the Linux Ping command using S option for spe-

cific data sizes. The RTT serves as a baseline to analyze whether or not the prototype

implementation achieved expected transmission time. As the size of transmitted data

increased (from 64 to 1,032 bytes), RTT also increased in both ENV1 (from 0.71 to

0.87 us) and ENV2 (from 0.98 to 1.55 us). RTT in ENV2 was greater than in ENV1 for

Table 1 Computational environments

Name Resources Client Server

ENV1 CPU Intel® Core™2 Duo CPU
E840 3.00 GHz

Identical

Memory
(RAM)

4 GB Identical

OS Windows 7 Enterprise CentOS 6.4 (Final) running Linux kernel
2.6.32-358.el6.x86_64 #1 SMP

Software MATLAB R2013b (8.2.0.701)
64-bit (win64)

NEURON 7.4 (984)

PLEXON SoftServer version 2.0 Python 2.7.3

ENV2 CPU Intel® Core™2 Quad CPU Q8400
2.66 GHz

2 Intel® Xeon® CPU L5640 2.27 GHz (6 cores/CPU)
with Hyper-threading enabled

Memory
(RAM)

6 GB 96 GB

OS Windows vista™ home premium
64-bit

Ubuntu running Linux kernel 2.6.38-8-generic
#42-Ubuntu SMP

Software MATLAB R2007b (7.5.0.342) 64-bit
(win64)

NEURON 7.4 (982+)

PLEXON SoftServer version 2.0 Python 2.7.3

Lee et al. Journal of Computational Surgery 2014, 1:12 Page 13 of 23
http://www.computationalsurgery.com/1/1/12
all data sizes, with the largest difference observed for a data size of 1,032 bytes (1.55 vs

0.87 us).

For the experiments, we used two datasets recorded by the Plexon system, which

were extracted from a live macaque monkey's M1 and PMd regions for 100 s of real

time. The macaque monkeys were performing a center-out reaching task (distance to

targets was 4 cm, target radius was 0.8 to 1 cm), with her right arm attached to exo-

skeletal robotic manipulandum (KINARM), corresponding to the initial manual train-

ing described in [30]. The animal had been implanted (after reaching task proficiency

level of approximately 80% success) in M1 and PMd, representing the right shoulder

and elbow regions, with multiple ‘Utah’ microelectrode arrays (10 × 10 electrode grid).

The total number of units in the data was 185 and 97 for M1 and PMd, respectively.

However, at this point, the specifics of the spiking data are not determined since the

model is not yet employing it to learn a task; instead, the focus of the paper is on put-

ting forward a proof-of-concept of the real-time interface. The datasets were selected

to be representative examples of physiological inputs that can be potentially exploited

by the biomimetic model.
Results
We conducted a series of experiments to verify that the prototype implementation suc-

ceeded in enabling the interaction between the in vivo data source and the simulator-

based sensorimotor cortex BMM under the principles of the proposed design. Using

the two datasets on the two different computational environments, we measured the

overhead caused by modules between the NEURON simulator and the Plexon SoftSer-

ver. In these experiments, the overheads included the latencies for the following opera-

tions: (a) reordering, (b) binning (for continuous input) or itemizing (for discrete

input), (c) filtering, (d) transmitting binned or chunk of spikes, (e) pushing binned (or

chunk of) spikes to the queue, and (f) pulling from the queue to feed the BMM.

Lee et al. Journal of Computational Surgery 2014, 1:12 Page 14 of 23
http://www.computationalsurgery.com/1/1/12
Assuming the binning operation requires n chunks of spiking data, the latency in the

binning operation is calculated as the time interval between the reception of the nth

chunk of data by the DPM and the completion of binning computation. The transmis-

sion latency is the time required to deliver a chunk of spiking data or a binned spikes

set through the network. For the latency measurement, we used a simplified version of

the BMM; while accepting continuous input through P cells or discrete input through

NSLOC units, P cells and NSLOC units were disconnected from the ES cells to prevent

model computations from taking place. For both the offline and online processing

mode simulations, we ran the full version of the NEURON model for 100 s of simu-

lated time. We also measured the elapsed time, which corresponds to the execution

time of the run phase in NEURON. Note that experimental results on ENV1 were

about the same as the ones on ENV2 regardless of which transmission protocol be-

tween UDP and TCP was used. Hence, for the latency measurements, only the TCP re-

sults on ENV2 are presented in this paper. In terms of execution time and spikes

generation, we only report the results from the HWC mode simulations, given that the

LWC mode simulations results were almost identical, both in ENV1 and ENV2.

Table 2 shows the number of spikes after applying various filtering options provided

in the prototype implementation and the percentage comparison with the no filtering

case (no filter). The following shows the filtering options in the implementation: no fil-

ter; filter of unsorted spikes (unsort); filter of sync spikes within 25 us (25 us window);

filter of unsorted spikes that are in 25 us sync window (unsort 25 us); filter of sync

spikes within 1 ms; filter of spikes unsorted as well as in 1 ms sync window (unsort

1 ms).

Figure 4 shows the filtering and transmission latency in ENV2 for different filtering

options. For the P-based simulation with the HWC mode, the packet size (payload) of

the binned data is always fixed to 776 bytes (96 channels × 8 bytes + 8 bytes per binning

window). On the other hand, with the LWC mode, the size of the chunks sent by the

client varies with an average of 600 bytes for dataset 1 and 1 Kbyte for dataset 2. This

difference of packet size between the HWC and LWC mode causes the HWC mode

transmission time to be either similar (Figure 4a) or lower (Figure 4b) than that of the

LWC mode in the P-based simulations.

Due to the difficulty of synchronizing the time in two distinct machines, we mea-

sured overhead by asking the client and the server to send very small-sized messages
Table 2 Dataset analysis

Name Dataset 1 Dataset 2

Data type M1 PMd

Frequency (Hz) of input spikes 1,399 3,173

Filtering option Number and percentage of input spikes after filtering (% no filtering)

No filter 139,529 (100) 317,034 (100)

Unsort 124,011 (89) 122,725 (39)

25 us window (25 us) 116,314 (83) 207,525 (66)

Unsort 25 us 103,110 (74) 94,413 (30)

1 ms window (1 ms) 31,854 (23) 21,437 (7)

Unsort 1 ms 28,489 (20) 11,971 (4)

Total time (s) 100 100

Figure 4 Latency for filtering and transmission in ENV2 with TCP transmission as a function of
filtering options. (a) The P-based model with dataset 1; (b) The P-based model with dataset 2; (c) The
NSLOC-based model with dataset 1; (d) The NSLOC-based model with dataset 2.

Lee et al. Journal of Computational Surgery 2014, 1:12 Page 15 of 23
http://www.computationalsurgery.com/1/1/12
before and after each operation to a time collection server running in another machine

in the same LAN environment. Therefore, considering the overhead caused by the

measurement process, the prototype implementation achieved reasonable transmission

times (<1 ms). As shown in Figure 4c,d, for the NSLOC-based simulation, where the

client just sends chunk of spikes to the server, the HWC mode shows lower latencies

than the LWC mode, specially for the 1 ms filtering options, as it benefits from having

to transmit less data.

Figure 4 also shows that the filtering operation in the LWC is faster than in the

HWC mode except for 1 ms and unsort 1 ms options. This suggests that the filtering

operation in the LWC mode, implemented in Python, performs better than in the

HWC mode implemented in MATLAB, when filtering is based on individual spikes

comparison (25 us). However, there is a little difference between implementations for

filtering based on group based comparison (1 ms).

Table 3 shows the total latency in ENV2 as a function of the different filtering options

supported by the prototype implementation. Total latency includes the time for the

reordering, binning for P (or itemizing for NSLOC), filtering, transmission, pushing,

and pulling operations. For dataset 1, the total latency in the LWC mode simulations is

generally lower than in the HWC mode, regardless of filtering options. However, in
Table 3 Total latency (ms) varying filtering options with the TCP transmission

Dataset Dataset 1 Dataset 2

Input type P (continuous) NSLOC (discrete) P (continuous) NSLOC (discrete)

Client mode HWC LWC HWC LWC HWC LWC HWC LWC

Filtering option No filter 1.79 1.59 2.35 2.23 1.75 1.86 2.81 2.73

Unsort 1.91 1.59 2.35 2.29 1.84 1.98 2.25 2.54

25 us window (25 us) 1.96 1.76 2.51 2.46 2.34 1.82 3.10 2.87

Unsort 25 us 2.22 1.79 2.54 2.35 2.25 2.02 2.72 2.75

1 ms window (1 ms) 1.90 1.57 2.10 2.21 1.77 1.86 1.87 2.44

Unsort 1 ms 2.02 1.84 2.25 2.18 2.08 2.05 1.87 2.38

Lee et al. Journal of Computational Surgery 2014, 1:12 Page 16 of 23
http://www.computationalsurgery.com/1/1/12
dataset 2, this difference is not so clear, which overall means that it is not possible to

conclude which mode is better: factors such as the spike frequency and spike pattern

have a significant influence on the total latency.

The size of a single queue item for the NSLOC-based simulation is 496 bytes, com-

posed of 20 spikes × 3 elements per spike × 8 bytes, 8 bytes for the number of spikes in

the item, and 8 bytes for the serial number of the item. For the P-based simulation, the

size is 776 bytes (96 channel × 8 bytes + 8 bytes for binning time). However, the pushing

and pulling operations in the NSLOC-based simulations take significantly more time

than in the P-based ones. In the prototype implementation, there are two ways for the

queue to recognize whether the simulation is faster or slower than the real time. First,

the queue checks how many items it contains. If it has less than two items, it assumes

that the simulation is running in real time. Otherwise, the queue carries out an add-

itional test to check the simulation: it retrieves the current NEURON time through a

shared variable, Python LOCK-based, and calculates the difference between the latest

time in the queue items and the current NEURON time. If the difference is greater

than LR, the simulation is considered to be running slower than the real time. Other-

wise, the queue assumes that the simulation is running in real time. For the latency

measurement, we used a simplified model; hence, the queue in the P-based model is

likely to have a single item within a binning interval, which prevents the queue from

fetching the current NEURON time. However, in the NSLOC-based model, it is rare

that the queue has less than two items, even for the simplified model, which increases

its overhead for pulling/pushing from/to the queue.

Figure 5 presents the execution time of the full version of the BMM in ENV2. The

execution time in the P-based model with the offline mode is significantly above the

100 s required to meet the real-time constraint except when applying the HWC-1 ms

and HWC-unsort-1 ms filtering options. On the other hand, most of the NSLOC-

based simulations achieved real-time processing, even in the offline processing mode

(Figure 5c,d). The offline processing mode with no filter option and dataset 2 takes

about 1.9 times longer than with dataset 1. This is because the number of input spikes

in dataset 2 without any filtering is about 2.3 times more than in dataset 1. Figure 5

also shows how the online processing mode in the prototype implementation satisfies

the real-time constraints (approximately 100 s).
Figure 5 Execution time of the BMM in ENV2 with the TCP transmission. Each simulation runs 100 s of
simulated time. (a) The P-based model with dataset 1; (b) the P-based model with dataset 2; (c) the
NSLOC-based model with dataset 1; and (d) the NSLOC-based model with dataset 2.

Lee et al. Journal of Computational Surgery 2014, 1:12 Page 17 of 23
http://www.computationalsurgery.com/1/1/12
Figure 6 presents the fraction of input and output spikes for each mode, taking as a

reference the offline processing mode simulation without filtering (HWC no filter),

which has 100% of both input and output spikes. As shown in the figure, all of the on-

line processing mode simulations satisfy the real-time constraint. There are two factors

that contribute to achieving the real-time constraint: filtering input sync spikes in the

DPM and discarding input spikes in the SIM. When the filtering option is set to HWC

no filter in the online processing mode, real-time processing is achieved only due to

discarding input spikes in the SIM. If the number of output spikes of an online mode

simulation is the same as that of the offline mode simulation, it means that only input

spike filtering is playing a role in meeting the real-time constraints (e.g., HWC-unsort-

1 ms in Figure 6b). Otherwise, the two methods are cooperating to deal with the real-

time constraint.

In Figure 6c, the NSLOC-based online mode simulations with HWC no filter/unsort/

25 us options generate slightly less output spikes than the offline mode ones with the

same filtering options. This means that the online mode simulations discard some in-

put spikes in the SIM. However, they should not need to discard any spikes given that

the offline mode simulations with the same options are able to run in real time

(Figure 5c). This happens because the prototype implementation was designed to keep

the simulation moving forward even when there are no input spikes, so that the simula-

tion achieves smoother arm trajectories. In order to do this, the callback function in

the NSLOC-based online mode simulation checks the queue at very short intervals and

forces NEURON to skip input spikes that are lagging behind real time. Therefore, the

higher the input spike frequency is the more likely it is that some input spikes are be-

hind the time the callback function is invoked. This explains why the three online

mode simulations mentioned above, with a relatively high input spike frequency, have

less output spikes than the equivalent corresponding offline mode simulations.

Figure 7a,b represents the virtual arm trajectories, that is, the x-y location of the arm

end-effector (hand) over time, generated by the P-based BMM simulations, for datasets

1 in offline and online modes, respectively. Figure 7c also shows the mean distance be-

tween each trajectory and the reference simulation trajectory (generated in the offline

mode with no filtering and plotted in dotted black color), obtained by taking samples

of the x-y hand position every 5 s. Figure 8 shows the results for dataset 2. The
Figure 6 Fraction of input and output spikes for different processing modes. The fraction of input
and output spikes based on the offline processing mode simulation without filtering (HWC no filter) in
ENV2 with the TCP transmission. (a) The P-based model with dataset 1; (b) the P-based model with dataset
2; (c) the NSLOC-based model with dataset 1; and (d) the NSLOC-based model with dataset 2.

Figure 7 Virtual arm movement analysis as a function of filtering options for dataset 1 in ENV2. (a)
Virtual arm trajectories in the P-based model with the offline mode; (b) virtual arm trajectories in the
P-based model with the online mode; and (c) Euclidean distance between the trajectories generated by the
different simulation modes and the reference trajectory, (averaged over 20 samples taken at 5 s intervals).
The black dotted line shows the reference trajectories. The P-based model ran for 100 s of simulated time
with the learning mode was turned off.

Lee et al. Journal of Computational Surgery 2014, 1:12 Page 18 of 23
http://www.computationalsurgery.com/1/1/12
trajectories in the offline mode simulation are smoother than in the online mode be-

cause, as previously mentioned, in the online mode, the prototype implementation

forces NEURON to skip its internal steps when the simulation is slower than real time.

This leap causes the virtual arm to skip some movements, too. For example, the virtual

arm trajectory graph in Figure 7a HWC no filter was plotted using 2,000 samples,

whereas the trajectory in Figure 7b HWC no filter consisted only of 498 samples.

Figures 7 and 8 show that, except for the 1 ms and unsort 1 ms filtering options, both

the offline and the online mode simulations are accurately generating virtual arm tra-

jectories very similar to that of the reference simulation.
Discussion
The prototype implementation achieved transmission between the data source and the

BMM with low overhead (<3.5 ms). This was achieved through the use of basic Java-based

MATLAB and Python-based libraries. Python threading is limited by its global interpreter

lock [31]. Hence, we conducted the real-time processing by using Python processes and

inter-process communication with NEURON. Commonly used neuronal simulators such

as NEURON [24], NEST [32], GENESIS [33], and MOOSE [34], for which BMM spiking

network models have been implemented, all provide Python-based interfaces. Being

Python-based, the interface with NEURON can be retargeted to other simulators that use a

Python interface and offer callback functions. In addition, the binning and filtering opera-

tions were implemented for both the HWC and LWC mode, i.e., in MATLAB and Python.

As demonstrated, the HWC and LWC modes have similar latency in the two given envi-

ronments. In other scenarios, users can select the mode that suits better their system per-

formance as needed.

Figure 8 Virtual arm movement analysis as a function of filtering options for dataset 2 in ENV2.
(a) Virtual arm movement in the P-based model with the offline mode; (b) virtual arm movement in the
P-based model with the online mode; and (c) Euclidean distance between the trajectories generated by the
different simulation modes and the reference trajectory (averaged over 20 samples taken at 5 s intervals).
The black dotted line shows the reference trajectories. The P-based model ran for 100 s of simulated time
with the learning mode was turned off.

Lee et al. Journal of Computational Surgery 2014, 1:12 Page 19 of 23
http://www.computationalsurgery.com/1/1/12
The prototype implementation of the design currently enables the data flow from the

Plexon MAP server (DIM) to NEURON (SIM). Depending on the data acquisition de-

vices and BMM the spiking network simulators used, it might be necessary to modify

the implementation of modules to deal with different types of input and output, and

different libraries. For example, if LFPs are to be used as input, then DPM and DCM

could be extended to deliver this type of signal. Nonetheless, all operations were modu-

larized to maximize module reusability in other contexts.

There are several inter-process communication methods available that support data

streams, including sockets, message queueing, and pipes. The rationale for choosing the

client–server model using TCP/IP socket communication for our prototype is its suitabil-

ity for research in neuroprosthetics, where the different systems are typically intercon-

nected in a LAN environment. The TCP/IP socket provides easy-to-use interfaces

between different platforms (Windows and Linux) as well as different programming envi-

ronments (MATLAB and Python), which are used in the prototype implementation. It is

yet unclear what communication methods will be required for working neuroprosthesis of

this kind in the future, but similar setups are a feasible option, for example, if the working

neuroprosthesis is being used in a clinical environment [1].

With respect to TCP and UDP transmission comparison, it is generally known that

the TCP transmission is slower than UDP [35]. Thus, previous BCI researchers utilized

the ‘pure’ UDP, or used a modified UDP to increase reliability. In the prototype imple-

mentation, we applied the TCP transmission with disabled TCP Nagle's algorithm and

demonstrated that the TCP transmission was not inferior to the UDP transmission for

the given data characteristics and LAN environments. Additionally, with the increase in

spike processing time on the server, the LWC mode has a greater chance of missing

Lee et al. Journal of Computational Surgery 2014, 1:12 Page 20 of 23
http://www.computationalsurgery.com/1/1/12
spike chunks when using UDP. Hence, we suggest that this modified TCP transmission

can be used instead of UDP and still achieve reliable spike transmission in LAN

environments.

In the prototype implementation, the online mode simulations generated significantly

less spikes than the offline mode ones since a large number of input spikes were dis-

carded by the queue in the SIM. The queue is aimed at achieving real-time simulations

while minimizing the discarding of input spikes but does not consider the type of

spikes being discarded or the effect this has on the network. In addition to the queue,

we devised an input spike filtering operation, based on the assumption that unsorted

spikes or spikes firing simultaneously within a short sync time window (e.g., 25 us)

were the result of noise in the system. As shown in Figures 7 and 8, even after remov-

ing these sync spikes, the BMM-driven virtual arm tracked the reference arm trajectory.

This worked in both offline and online modes, except for two of the filtering cases:

HWC-1 ms and HWC-unsort-1 ms. Because experiments have not yet revealed the na-

ture of the simultaneously occurring spikes, we cannot definitively conclude they were

caused by noise. However, our results suggest that such input spikes did not play a crit-

ical role in the virtual arm movements.

Our design does not manage the computational resources required by the BMM sim-

ulators. This contrasts with previous methods, such as the Cyber-Workstation, which

includes the parallel processing capabilities required for the concurrent execution of

multiple models demanding large amounts of computing resources [21]. The design as-

sumes that the BMM simulator will employ the necessary tools to manage its own

computational resources. Nonetheless, achieving real-time processing may require

parallelization of the BMM itself and efficient methods to feed in vivo data into a paral-

lelized BMM.

In the present example, we assumed that the recorded MUA data represented pro-

prioceptive information fed directly from the monkey's brain to a corresponding neural

population (P) for continuous input, or to spike generators (NSLOC) for discrete input

to the BMM. These proprioceptive signals, which could potentially be recorded from

M1, PMd or posterior parietal cortex (PPC), would represent the external state of the

prosthetic device (e.g., joint angle) [36,37]. However, the focus of the paper is on dem-

onstrating this external input can be provided in real time to the BMM; decoding the

actual joint angles from the M1 or PMd data is out of the scope of this work. Recorded

activity from M1 could also replace the background input noise currently used to drive

the model, leading to more complex and realistic dynamics [22]. PMd activity has also

been hypothesized to encode movement preparatory information such as the target to

reach and path to follow [38]. Therefore, another potential application of our system is

to use the target information encoded in the input PMd data to modulate the activity

of the model towards reaching that specific target.

Recently, communication between a NEURON-based BMM and a physical robot arm

was demonstrated in a LAN environment [10]. The outputs from the model were deliv-

ered to the physical robot arm via UDP transmission, with the robot arm moved fol-

lowing the received motor commands. However, in that study, the discrepancy in

update frequency between the model, which run approximately 4 times slower than real

time (approximately 6 Hz), and the robot arm (500 Hz) led to undesired abrupt trajec-

tory changes. Making the model run in real time, by discarding input spikes or by

Lee et al. Journal of Computational Surgery 2014, 1:12 Page 21 of 23
http://www.computationalsurgery.com/1/1/12
filtering some of them, may be a possible solution to achieve a higher update frequency

and therefore smoothen the robot trajectory. We are currently working on implement-

ing additional data flow paths of the design, in particular, those to enable bidirectional

communication between the NEURON-based model and a prosthetic device to form a

closed-loop system.

Conclusions
We proposed a design that enables communication between an in vivo data source, a

simulator-based BMM, and a prosthetic device. The design specifies a set of modules

and data flows among them. We implemented a prototype of the design, enabling inter-

action between the Plexon MAP server and a NEURON-based model of sensorimotor

cortex capable of controlling a virtual arm. The prototype implementation showed that

it supports real-time simulations with a low communication overhead. Interconnection

between in vivo experiments and simulator-based BMMs opens the door to a new

range of experimental paradigms in brain research. For example, the design could

underlie hybrid experimental test beds combining brain activity and a BMM to develop

new forms of brain-machine interfaces where the real and simulated brain coadapt and

work together [2,36] in order to repair a damaged brain. Ultimately, the test beds could

also be utilized to understand how neural-based cortical stimulation could be applied

to accelerate recovery from brain injury [6,7,39].

Abbreviations
BCI: Brain computer interfaces; BMM: Brain biomimetic model; DCM: Data communication module; DIM: Data
acquisition interface module; DPM: Data processing module; EM: Excitatory motor; ES: Excitatory sensory cell;
FIFO: First-in first-out; HWC: Heavyweight client; ILM: Low-threshold spiking motor interneuron; ILS: Low-threshold
spiking sensory interneuron; IM: Fast-spiking motor interneuron; IS: Fast-spiking sensory interneuron; LAN: Local area
network; LFP: Local field potential; LR: Latency requirement; LWC: Lightweight client; M1: Macaque primary motor
cortex; MAM: Model execution analysis module; MCM: Model execution configuration module; MOM: Model execution
optimization module; MUA: Multi-unit activity; NSLOC: Modified NetStim for discrete stimuli; PIM: Prosthetic device
interface module; PMd: Dorsal premotor cortex; PPC: Posterior parietal cortex; RTT: Round trip time; SIM: Simulator
interface module; TCP: Transmission control protocol; UDP: User datagram protocol.

Competing interests
The authors declare that they have no competing interests.

Authors’ contributions
GL participated in the design and coordination of the study, conducted the experiments, analyzed the results, and drafted
the manuscript. AM participated in the design and coordination of the study, helped to analyze experimental results and
drafted the manuscript. WZ helped to conduct the experiments. SDB, WWL, JTF, and JABF participated in the design and
coordination of the study and helped to draft the manuscript. All authors read and approved the final manuscript.

Authors’ information
GL and WZ are research assistants in the ACIS Lab. of Electrical and Computer Engineering at the University of Florida.
AM is an assistant research professor of the Electrical and Computer Engineering at the University of Florida. In the
department of the Physiology and Pharmacology at the State University of New York Downstate Medical Center, SDB
is a Postdoctoral fellow and WWL and JTF are professors. JABF is the AT&T Eminent Scholar and professor of Electrical
and Computer Engineering and Computer and Information Science and Engineering at the University of Florida.

Acknowledgements
This research is supported by the DARPA grant N66001-10-C-2008. The authors thank Dr. Chadderdon and Dr.
Neymotin for their support with the NEURON-based BMM; and Joe Francis Lab, in particular, Dr. Tarigoppula, for their
in vivo data support.

Author details
1Department of Electrical and Computer Engineering, University of Florida, P.O. Box 116200, 216 Larsen Hall, Gainesville
32611, FL, USA. 2Department of Computer and Information Science and Engineering, University of Florida, P.O. Box
116120, E301 CSE Building, Gainesville 32611, FL, USA. 3Department of Physiology and Pharmacology, State University
of New York Downstate Medical Center, 450 Clarkson Avenue, Brooklyn 11203, NY, USA. 4Department of Neurology,
State University New York Downstate Medical Center, 450 Clarkson Avenue, Brooklyn 11203, NY, USA. 5Department of
Neurology, Kings County Hospital, 450 Clarkson Avenue, Brooklyn 11203, NY, USA. 6Joint Program in Biomedical

Lee et al. Journal of Computational Surgery 2014, 1:12 Page 22 of 23
http://www.computationalsurgery.com/1/1/12
Engineering at Polytechnic Institute of New York University and State University of New York Downstate, 450 Clarkson
Avenue, Brooklyn 11203, NY, USA. 7Program in Neural and Behavioral Science at State University of New York
Downstate, 450 Clarkson Avenue, Brooklyn, NY, 11203, USA. 8The Robert F. Furchgott Center for Neural & Behavioral
Science, State University of New York Downstate Medical Center, 450 Clarkson Avenue, Brooklyn, NY, 11203, USA.

Received: 23 May 2014 Accepted: 13 October 2014
Published: 11 November 2014

References

1. Leuthardt EC, Schalk G, Moran D, Ojemann JG: The emerging world of motor neuroprosthetics: a neurosurgical

perspective. Neurosurgery 2006, 59(1):1–14.
2. Sanchez JC, Lytton WW, Carmena JM, Principe JC, Fortes J, Barbour RL, Francis JT: Dynamically repairing and

replacing neural networks: using hybrid computational and biological tools. IEEE Pulse 2012, 3(1):57–59.
3. Chadderdon GL, Neymotin SA, Kerr CC, Lytton WW: Reinforcement learning of targeted movement in a spiking

neuronal model of motor cortex. PLoS One 2012, 7(10):e47251.
4. Neymotin SA, Chadderdon GL, Kerr CC, Francis JT, Lytton WW: Reinforcement learning of two-joint virtual arm

reaching in a computer model of sensorimotor cortex. Neural Comput 2013, 25(12):3263–3293.
5. Dura-Bernal S, Chadderdon GL, Neymotin SA, Xianlian Z, Przekwas A, Francis JT, Lytton WW: Virtual

musculoskeletal arm and robotic arm driven by a biomimetic model of sensorimotor cortex with
reinforcement learning. IEEE Signal Process Med Biol Symp (SPMB) 2013, doi:10.1109/SPMB.2013.6736768.

6. Kerr CC, Neymotin SA, Chadderdon GL, Fietkiewicz CT, Francis JT, Lytton WW: Electrostimulation as a prosthesis for
repair of information flow in a computer model of neocortex. IEEE Trans Neural Syst Rehabil Eng 2012, 20(2):153–160.

7. Song W, Kerr CC, Lytton WW, Francis JT: Cortical plasticity induced by spike-triggered microstimulation in
primate somatosensory cortex. PLoS One 2013, 8:e57453.

8. Chadderdon GL, Mohan A, Suter BA, Neymotin SA, Kerr CC, Francis JT, Shepherd GMG, Lytton WW: Motor cortex
microcircuit simulation based on brain activity mapping. Neural Comput 2014, 26(7):1239–1262.

9. Neymotin SA, Lee H, Park E, Fenton AA, Lytton WW: Emergence of physiological oscillation frequencies in a
computer model of neocortex. Front Comput Neurosci 2011, 5(19):17.

10. Dura-Bernal S, Chadderdon GL, Neymotin SA, Francis JT, Lytton WW: Towards a real-time interface between a
biomimetic model of sensorimotor cortex and a robotic arm. Pattern Recognit Lett 2014, 36:204–212.

11. Piwkowska Z, Destexhe A, Bal T: Associating living cells and computational models: an introduction to
dynamic clamp principles and its applications. Dynamic-Clamp 2009, 1:1–30.

12. Brette R, Rudolph M, Carnevale T, Hines M, Beeman D, Bower JM, Diesmann M, Morrison A, Goodman PH, Harris
FC, Zirpe M, Natschläger T, Pecevski D, Ermentrout B, Djurfeldt M, Lansner A, Rochel O, Vieville T, Muller E, Davison
AP, Boustani SE, Destexhe A: Simulation of networks of spiking neurons: a review of tools and strategies.
J Comput Neurosci 2007, 23(3):349–398.

13. Bishop W, Armiger R, Burck J, Bridges M, Hauschild M, Englehart K, Scheme E, Vogelstein RJ, Beaty J, Harshbarger
S: A real-time virtual integration environment for the design and development of neural prosthetic systems.
In The 30th Annual International Conference of the IEEE Engineering in Medicine and Biology Society; 2008:615–619.

14. Armiger RS, Tenore FV, Bishop WE, Beaty JD, Bridges MM, Burck JM, Vogelstein RJ, Harshbarger SD: A real-time
virtual integration environment for neuroprosthetics and rehabilitation. J Hopkins APL Tech Dig 2011, 30(3):198–206.

15. Delorme A, Kothe C, Vankov A, Bigdely-Shamlo N, Oostenveld R, Zander TO, Makeig S: MATLAB-based tools for
BCI research. Brain-Computer Interfaces 2010, pp 241–259.

16. Schalk G, Mcfarl DJ, Hinterberger T, Birbaumer N, Wolpaw JR: BCI2000: a general-purpose brain-computer
interface (BCI) system. IEEE Trans Biomed Eng 2004, 51(6):1034–1043.

17. Bianchi L, Babiloni J, Cincotti J, Mattia D, Marciani M: Developing wearable bio-feedback systems: the BF++
framework approach. In The 1st International conference of IEEE EMBS on Neural Engineering; 2003:607–609.

18. Maggi L, Parini S, Perego P, Andreoni G: BCI++: an object-oriented BCI prototyping framework. In Proceedings of
the 4th International Brain-Computer Interface Workshop and Training Course; 2008.

19. Renard Y, Lotte F, Gibert G, Congedo M, Maby E, Delannoy V, Bertrand O, Lécuyer A: OpenViBE: an open-source
software platform to design, test, and use brain-computer interfaces in real and virtual environments.
Presence: Teleoperators Virtual Environ 2010, 19(1):35–53.

20. Schlogl A, Brunner C: BioSig: a free and open source software library for BCI research. Computer 2008, 41(10):44–50.
21. Rattanatamrong P, Matsunaga A, Fortes JAB: BMI CyberWorkstation: a cyberinfrastructure for collaborative

experimental research on brain-machine interfaces. In The 6th International Conference on Collaborative
Computing: Networking, Applications and Worksharing (CollaborateCom); 2010:1–10.

22. Kerr CC, Van Albada SJ, Neymotin SA, Chadderdon GL, Robinson PA, Lytton WW: Cortical information flow in
Parkinson's disease: a composite network/field model. Front Comput Neurosci 2013, 7(39):14.

23. Migliore M, Cannia C, Lytton WW, Markram H, Hines ML: Parallel network simulations with NEURON. J Comput
Neurosci 2006, 21(2):119–129.

24. Hines ML, Davison AP, Muller E: NEURON and Python. Front Neuroinformatics 2009, 3(1):12.
25. Lytton WW, Omurtag A, Neymotin SA, Hines ML: Just-in-time connectivity for large spiking networks.

Neural Comput 2008, 20(11):2745–2756.
26. Lytton WW, Stewart M: Rule-based firing for network simulations. Neurocomputing 2006, 69(10):1160–1164.
27. Postel J: User datagram protocol. In RFC 768; 1980.
28. Postel J: Transmission control protocol. In RFC 793; 1981.
29. Zhang W, Lee G, Matsunaga A, Fortes JAB: Implementing networking communication between PLEXON and

NEURON. In Technical Report. Gainesville, FL, USA: Univ. Florida, ACIS Lab; 2012.
30. Sanchez JC, Tarigoppula A, Choi JS, Marsh BT, Chhatbar PY, Mahmoudi B, Francis JT: Control of a center-out

reaching task using a reinforcement learning brain-machine interface. In The 5th International conference of
IEEE EMBS on Neural Engineering; 2011:525–528.

31. Beazley D: Understanding the python gil. Georgia: PyCON Python Conference Atlanta; 2010.

Lee et al. Journal of Computational Surgery 2014, 1:12 Page 23 of 23
http://www.computationalsurgery.com/1/1/12
32. Eppler JM, Helias M, Muller E, Diesmann M, Gewaltig MO: PyNEST: a convenient interface to the NEST simulator.
Front Neuroinformatics 2008, 2(12):12.

33. Cornelis H, Rodriguez AL, Coop AD, Bower JM: Python as a federation tool for GENESIS 3.0. PLoS One 2012,
7(1):e29018.

34. Gaston D, Newman C, Hansen G, Lebrun-Grandié D: MOOSE: a parallel computational framework for coupled
systems of nonlinear equations. Nuclear Eng Design 2009, 239(10):1768–1778.

35. Communication Networks/TCP and UDP Protocols-Wikibooks. http://en.wikibooks.org/wiki/Communication_Networks/
TCP_and_UDP_Protocols.

36. Digiovanna J, Marchal L, Rattanatamrong P, Zhao M, Darmanjian S, Mahmoudi B, Sanchez JC, Príncipe JC, Hermer-
Vazquez L, Figueiredo R, Fortes JAB: Towards real-time distributed signal modeling for brain-machine interfaces.
In ICCS '07: Proceedings of the 7th international conference on Computational Science, Part I; 2007:964–971.

37. Francis JT: The neural representation of kinematics and dynamics in multiple brain regions: the use of force
field reaching paradigms in the primate and rat. Mechanosensitivity Nerv Syst 2009, 2:215–247.

38. Miall RC: Cortical motor control. In Neuroscience in the 21st Century; 2013:1187–1208.
39. Li L, Park IM, Brockmeier A, Chen B, Seth S, Francis JT, Sanchez JC, Principe JC: Adaptive inverse control of neural

spatiotemporal spike patterns with a reproducing kernel Hilbert space (RKHS) framework. IEEE Trans Neural
Syst Rehabil Eng 2013, 21(4):532–543.
doi:10.1186/s40244-014-0012-3
Cite this article as: Lee et al.: Towards real-time communication between in vivo neurophysiological data sources
and simulator-based brain biomimetic models. Journal of Computational Surgery 2014 1:12.
Submit your manuscript to a
journal and benefi t from:

7 Convenient online submission

7 Rigorous peer review

7 Immediate publication on acceptance

7 Open access: articles freely available online

7 High visibility within the fi eld

7 Retaining the copyright to your article

 Submit your next manuscript at 7 springeropen.com

http://en.wikibooks.org/wiki/Communication_Networks/TCP_and_UDP_Protocols
http://en.wikibooks.org/wiki/Communication_Networks/TCP_and_UDP_Protocols

	Abstract
	Background
	Methods
	System requirements
	Design of a generic network-based interface
	Data acquisition interface module
	Data processing module
	Prosthetic device interface module (PIM)
	BMM simulator interface module (SIM)
	Data communication module (DCM)
	Model execution optimization module (MOM)
	Model execution analysis module (MAM)
	Model execution configuration module (MCM)

	Example prototype implementation
	NEURON-based BMM
	Data acquisition interface module (DIM)

	Data Processing Module (DPM)
	Data communication module (DCM)
	BMM simulator interface module (SIM)
	Model execution configuration module (MCM)
	Computational environment

	Results
	Discussion
	Conclusions
	Abbreviations
	Competing interests
	Authors’ contributions
	Authors’ information
	Acknowledgements
	Author details
	References

