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Research School of Engineering, Automatic closed-loop administration of medicinal drugs has been the subject of
The Australian National University, . . ) . .
Canberra 0200, Australia intense research for decades due to its undisputed potential benefits in terms of cost
savings and improved patient outcomes. However, concerns still exist about the
ultimate safety of engineered feedback controllers. Manual methods remain dominant
in clinical practice. In this context, we present a novel feedback control architecture,
which combines multiple robust controllers with a particle filter-based method for
real-time tracking of a patient’s dose-response characteristic. The proposed method is
applied to the case of the drug sodium nitroprusside, a vasodepressor used in the
treatment of acute hypertension in intensive care and surgery, which is modelled as
having a linear-time-varying dose-response characteristic. Our design takes into
account the uncertainty in the patient response parameters, as well as potential
nonzero-mean disturbances in the baseline arterial pressure and several possible time
trends in the variation of the dose-response model. The performance and safety of the
new approach are evaluated through an extensive computational simulation
campaign. The results show that the proposed system can achieve adequate and safe
feedback control of mean arterial pressure, thus validating our analysis and design. Our
findings also highlight the fundamental - and possibly clinically overlooked - role of
system excitation in ensuring that successful simultaneous identification and control of
time-varying drug administration systems can be achieved.
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Background

In many clinical settings, the administration of suitable medicinal drugs is required to
maintain important biological signals within an acceptable range. Unfortunately, sig-
nificant variability exists in the way different patients respond to the same drug dose
(interpatient variability), and variations can even occur in the response of one individual
over time (intrapatient variability). Appropriate dosing of drugs characterised by a nar-
row range of therapeutic concentrations and high variability in the response is therefore
a challenging task. In these cases, dose titration protocols are followed, by which clinical
operators administer an initial drug amount, generally according to population statistics
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(e.g. age, gender, height, weight,...), followed by close monitoring and periodic manual
adjustment of the dose on the basis of the clinical observations. This manual form of
closed-loop regulation is prone to human error [1] and can be very time-consuming in
clinical environments where timely intervention and/or staff levels can be an issue. In
this context, the successful development of safe and effective automatic control methods
could bring the significant benefits of improved patient outcomes and better allocation of
clinical resources [2].

Over the last 30 years, much research has been devoted to the development of strate-
gies for closed-loop feedback control of drug administration for a variety of applications,
including control of haemodynamics, insulin for diabetes management, chemotherapy,
anaesthesia and neuromuscular blockade [3-5]. Remarkably, despite promising results in
clinical research publications, closed-loop methods for automatic drug administration
have not yet been embraced by the medical community, and manual control remains,
to date, the standard of care in the clinical setting. Indeed, leading scholars in the field
have recently acknowledged that “Success in the development of [...] closed-loop biomedical
devices, will be contingent on the development of robust, verifiable advanced control algo-
rithms” [6]. This suggests that insufficient guarantees of system robustness may be a key
reason - in terms of risk assessment considerations - underpinning clinicians’ continued
preference for manual methods.

This paper considers the specific problem of intravenous infusion of the drug sodium
nitroprusside (SNP). The SNP case study typifies research into closed-loop drug admin-
istration. SNP is a fast-acting vasodepressor used in the treatment of acute hypertension
in intensive care and surgery patients. The drug is highly effective in reducing mean arte-
rial pressure (MAP); however, incorrect dosing may lead to undesired hypotensive peaks
or metabolic toxicity [7], hence the interest in reliable automatic drug dosing. Following
the clinical validation of a dose-response model by Slate [8], administration of SNP was
the subject of intense research during the 1980s and 1990s, and a wide range of control
engineering approaches were proposed, including self-tuning regulators [9], model refer-
ence adaptive control [10], multiple model adaptive control [11,12], fuzzy control [13] and
model predictive control [14] (see [15] for a review). A commercial device (IVAC titrator;
IVAC Medical Systems, Inc., San Diego, CA, USA) developed for SNP titration in inten-
sive care applications reported success in clinical trials [16] but was never successfully
marketed (as discussed in [17]). To the best of our knowledge, the automatic management
of MAP through SNP and other drugs remains to this day an experimental pursuit.

The work herein presents a novel approach to the control of automatic infusion of
SNP with a strong focus on robustness. The proposed methodology is an extension of
an earlier approach which featured multiple robust feedback controllers designed with
synthesis [18] and used Kalman-filter-based estimators [19] to determine controller selec-
tion in the context of a robust multiple model adaptive control architecture [20]. While
retaining the same robust controllers as the previous work, the new approach uses par-
ticle filtering to generate an estimate of the dose-response characteristic in real time and
exploits the estimation result to inform appropriate feedback control. The new method
has been named Robust Adaptive Control with Particle Filtering (RAC-PF) and we have
reported on a nonclinical case study featuring this architecture in [21], where we posi-
tively compared the performance of RAC-PF with that of a Kalman-filter-based approach.
We deem particle filters to be better suited to the estimation of systems characterised
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by time-varying parameters, non-Gaussian disturbances and even nonlinearities, such
as pharmacokinetic-pharmacodynamic systems [22]. As a more general estimation tool,
particle filtering allows us to remove undesirable ad hoc filter adaptations present in our
earlier work. The resulting architecture can be readily transposed to other applications
as required. This article provides an overview of the main characteristics of RAC-PF and
reports on an extensive computational simulation campaign designed to assess the via-
bility of the new methodology and its effectiveness in delivering safe automatic feedback
control of SNP infusion for a broad range of response characteristics and disturbances.

The manuscript is structured as follows: the Methods Section comprises of three
subsections detailing the SNP dose-response model, the proposed RAC-PF control archi-
tecture, and the characteristics of the computational simulations, respectively; the Results
Section reports on the outcomes of the simulation campaign; finally, the Discussion and
Conclusion Sections comment on the results and the potential of the proposed approach,
and outline future research directions.

Methods

Model and problem description

Dose-response model

The dose-response model for a patient receiving SNP is shown in Figure 1. The sys-
tem, taken from [12], is a variation of the experimentally validated model of [8]. Patient
response is modelled as three interconnected first-order linear, time-invariant compart-
ments representing the systemic and pulmonary circulation and the drug effect site. In
transfer function form, the dynamic behaviour of the system is given by:

Pdrop(s) — T K(r3s+1) 1)
ues ((t3s + D(r2s + 1) — o) (t1s + 1)

and the output is given by the affine transformation

Ymeas(£) = po(£) = Pyrop () + W(D). 2)

The three system parameters are deemed uncertain and a priori unknown: K, T and «.
These represent the sensitivity in the patient’s response, the recirculation fraction and the
input time delay, respectively. The allowed ranges for the values and the rates of change
of the parameters were chosen so as to render a very general formulation for the problem.
Parameter variability has been considered to the best of the knowledge available in the

literature, and further details on the assumed parameter ranges and allowable rates of

delay systemic cir< effect site Po w
u —g N 1 1 b drop J& Y J\ Ymeas
et T25+1 s+l [ K - %
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Figure 1 Dose-response model. Model of patient response to SNP. Notation: T is the pure delay parameter;
7, =505, 7, = 305, 73 = 10 s are the time constants of the first-order LTI subsystems; « is the recirculation
parameter; K is patient sensitivity; p, is the patient’s natural MAP; w is output measurement noise.
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change are discussed in [19]. A summary is provided below (note: the model assumes a

drug concentration of 200 pg/ml):

025 < K(t) <95, [258] | %] < 3K (&) h!

ml/h
10 < T(®) <50,  [s] “fi—{ <40h! 3)
0.25 < a(t) < 0.75, da} —05h7!

The offset term po(t) is also treated as potentially time-varying in the interest of
generality. As po () represents a patient’s underlying MAP, it is modelled here as a mainly
low-frequency signal, given by the combination of its measurable value at £ = 0 and an
arbitrarily shaped but frequency-domain-bounded component, which we will refer to as
baseline disturbance Pist @)

Po(8) = pot = 0) + pyi (2)

(4)
. 0.4
Paist®) : Py (8) = 501

Thus, p,(t = 0) can be regarded as a known fixed offset at the output, while the distur-
bance component can be treated as part of the state as shown in the following state space
description of the patient response model:

k= A0+ Bult = T(0) + Lv(o) + Mpy (©) -
Yimeas = Pot = 0) — Cx(t) + w(?)
with
. 1 0 0 0 (62)
0 1 0 0
0 1 0 —001
1 0.0625 0
B= g L= 8 M= 8 c=[of0 Ko 1], (6b)
0 0 0.4

where v(¢) ~ N(0,1), w(¢) ~ N(0,2) are normally distributed random noise signals at
the input (actuation noise) and the output (measurement noise), respectively. The signal
Ymeas (t) represents the measurable MAP value.

Control performance requirements

The following performance requirements apply [23]:

o A settling time of preferably 10 min or less, but no more than 15 min

e MAP should be contained within +10 mmHg of the desired set-point value at most
times

e Under no circumstances should the system display resonant (persistent oscillatory)
or unstable behaviour or cause MAP to drop below a pre-determined dangerous
threshold (set at 60 mmHg for the purpose of this work)

e To ensure that SNP toxicity is prevented, the infusion rate should not exceed a
pre-determined value (set here at 200 ml/h)

e High-frequency dynamics in the control signal should be limited since drug delivery
is generally provided through mechanically actuated infusion pumps

Page 4 of 19
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The control approach

The RAC-PF architecture is shown in Figure 2. In the proposed approach, multiple con-
trollers are required in order to ensure that a controller-plant pair capable of maintaining
closed-loop stability and delivering the required level of performance exists for all pos-
sible values of the patient parameters. A particle filter tracks the parameters in real time
and informs the controller selection algorithm with a probability result, which is in turn
used to select the most appropriate controller for insertion in the loop.

Controller design

The controllers are designed using p synthesis. This is an advanced control engineer-
ing method used in the design of linear feedback controllers for applications where
stability and performance must be guaranteed in the face of uncertainty in the model of
the system to be controlled (robustness). In i synthesis, a dynamical system is consid-
ered along with a model or bounding function of any uncertainty it features, whether
structured (e.g. parametric) or unstructured (e.g. arising from the presence of delays
and/or nonlinearities). Any performance specifications are also expressed in terms of fre-
quency domain bounds. The technique involves a numerical search over the space of
stabilising controllers and enables the designer to compute a feedback controller capable
of delivering robust performance in the closed-loop configuration, if one such controller
exists [24].

Controller design and u synthesis are not the focus of this paper and we refer the reader
to [18,19] for a detailed description of the controller design methods and results as applied
to the SNP dose-response model of (1). For the purpose of the presentation hereof, it will
suffice to report that the performance specifications were imposed as frequency domain
bounds on signals €(¢) and u(t) as shown in Figure 3. These constraints translate into
requirements for a small reference tracking error at low frequencies (to ensure proper tar-
get following at steady state) and a mainly low-frequency infusion rate signal (to cater for

. Particle Filter
Controller selection

. m(t)
Supervisor PF
a(t)
Controller bank ()
ot
c o(t) ’ w(t)
: |
T‘(t) G(t) CQ y(t) Ymeas (t)
— (O . é Patient ———— —>
_ : u(t)
Cs

Figure 2 RAC-PF control architecture. Closed-loop architecture. Notation: r(t) reference signal (desired
MAP value); C; ¢ candidate controllers; € (1) = r(t) — Yieas (1) MAP tracking error; u(t) control signal (drug
infusion rate); p, (t) patient’s underlying MAP; y(t) output MAP; w(t) measurement noise; y,,q,, (t) measured
MAP; 7 (t) = {;};; s probability of the estimated model parameters belonging to the uncertainty subset
for which robust controller C; has been designed; o (t) controller selection signal.
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Figure 3 Performance bounds. Frequency-domain upper bound constraints for performance and control
signals adopted for controller design using the u synthesis technique.

the slew-rate limitations of the actuator, likely a motorised infusion pump). Our u synthe-
sis computations have shown that a single linear feedback controller could not deliver the
required level of performance due to the large ranges of parametric uncertainty (in partic-
ular the sensitivity parameter K). However, satisfactory performance could be achieved by
subdividing the uncertainty range of K into multiple subsets and designing a robust con-
troller for each subset. Figure 4 and Table 1 describe the five controllers resulting from our
synthesis and the corresponding uncertainty subsets. Note that all controllers cater for
the full uncertainty range of parameters « and T, while, with respect to K, each controller
is associated with a region of best performance and a region of acceptable performance
based on a minimum required normalised performance index A = 1.

2
Acceptable performance region,
controller C,
< 1.8
é Best performance region,
_‘g controller C,
0]
o
C
£ Cs
S
=
)
Q
°
@
N
©
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o
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Figure 4 Controller performance results. Normalised performance of the uncertain dose-response model
when paired with the designed controllers as a function of sensitivity parameter K. The required level of
robust performance in the feedback interconnection can be achieved for A > 1.
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Table 1 Results of controller design

Controller To suitK To suitK To suit To suit
number i (best performance) (acceptable performance) o delay
(mmHg/(ml/h)) (mmHg/(ml/h)) T(s)
1 0.25-0.57 0.25-0.78 0.25-0.75 0-50
2 0.57-1.25 0.37-1.77 0.25-0.75 0-50
3 1.25-2.30 0.75-345 0.25-0.75 0-50
4 2.30-4.32 1.33-6.50 0.25-0.75 0-50
5 4.32-9.50 245-9.50 0.25-0.75 0-50
FParticle filtering

Particle filtering is a sequential Monte Carlo method which iteratively computes the con-
ditional probability distribution of the state of a partially observed dynamical system
described by a stochastic state-space model [25]. In this application, the main focus is
not to estimate the state but rather to identify the parameters (particularly patient sen-
sitivity K) so that the correct controller can be used in the feedback loop. To this end,
the estimation problem is recast as a nonlinear tracking problem to include the uncertain
parameters in the state, as shown in (7) below. We refer to the original system states as
‘linear’ states x* as opposed to the ‘nonlinear’ states x" representing the parameters. Such
a mixed linear/nonlinear formulation is well suited to the application of a specialised form
of particle filtering called marginalised particle filtering [26].

Particle filtering is a numerical, therefore discrete-time approach. Due to the nature of
clinical MAP observations (require averaging over at least 1 cardiac cycle), we consider
a sampling time Ts = 2 s [19]. The discrete-time description of the system used in the
particle filter is given by

x (k+1) = A (" (k))x" (k) + Bu (k - LT(%U()) J) + L (k) + M p i (K)

x"(k+1) = f(x" (k) 7)
Ymeas (k) = Po(0) — C,(x" (k)" (k) + w(k),

where k = LTLSJ (L-] is the floor operator). The subscript d indicates zero-order hold
discretisation of continuous-time model (5).

The expression f(x") indicates a function of x” and describes the time update of the
nonlinear states. It is given by:

K(k+1)
Ak+1)=| Tk+1) | ="Kk + xk), (8)
ak+1)

where x (k) is sampled from an array of probability distributions which are intended to
reflect the likely trajectory of the parameters. Uniform distributions ({/) are used to cap-
ture the constraints on the rate of change of parameters expressed in (3) while making no
assumptions on possible trends (tracking by random walk), as shown below:

U(—0.017K (k), 0.017K (k))
x (k) ~ 1I(—0.028,0.028) . )
1I(—0.00028, 0.00028)

The aim of filtering is to obtain the posterior probability density of the state condi-
tioned on the observations up until that time point, i.e. p(x(k)|Z(0 : k)), where p indicates
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probability and Z(0: k) = {[u(i) Yimeas (8] }i‘;o’ represents the observations. The pos-
terior probability can be calculated analytically in the case of linear-Gaussian systems
using Kalman filters, while, for more general cases, numerical approximation methods
must be used [26]. Particle filters are one such method, which approximates the posterior
probability with a finite number of samples (particles).

Particles can be understood as realisations of the system to be estimated, sampled from
a known or presumed initial probability distribution p(x(0)). At every time step, the state
of each particle is updated according to the dynamics of the realisation it represents. The
output of each particle is then compared with the actual observed output and a weight is
generated for the particle. A resampling step follows, during which particles with poorer
weights have a higher chance of being discarded and reintroduced as a copy of a better
performing realisation. Over a number of iterations, particles will cluster in the state space
in a way that approximates the posterior probability density of the state. The process is
illustrated graphically in Figure 5. As the number of particles increases, so does the accu-
racy of the approximation but also the computational burden associated with computing
a large number of candidate realisations in parallel. The number of particles required to
achieve a given level of approximation grows exponentially with the dimensionality of the
target system, rendering the estimation of complex problems computationally onerous.

Marginalised particle filters exploit the fact that a subset of the states can be treated
as conditionally linear (x/ here). This methodology involves an estimation of these states
using the optimal Kalman filter result (marginalisation), while the other states (x") are
estimated by the particle filter. As the dimensionality of the numerical problem is thus

State space

Initial distribution of particles

—> O O O 0O 0O 0 O O .0 0 0 0 0o

Next state of particles (deterministic and

stochastic dynamics) ) .

—> o O o @ QO O (ORO) ©0)
Probability distribution /

of observations given e T

the state ~—

Particle weighting

o0 O O o o OO 0o
o 0 @ 60 o

Next state of particles (deterministic and

stochastic dynamics) / .
O OO0 OO0 O OO0 0000 O

Time

Weight-based resampling

!

Probability distribution
of observations given
the state

v

..efc...

Figure 5 Particle filtering. lllustration of the sampling-weighting-resampling process, which underpins
particle filtering.
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reduced, marginalised particle filtering is associated with a comparatively lower compu-
tational burden. Here follows a description of our algorithm, which combines a bootstrap
particle filter implementation [27] with marginalisation.

Marginalised particle filter algorithm

(@) Initialisation. State x;(0) for particlei = 1,...,N is set as
U (0.25,9.5)
x/(0) ~ (0,P(0)) x"(0) ~ U(10,50)
U(0.25,0.75)

with state estimate covariance matrix P(0) = 0, as P20)) certainly equals O since
the patient has received no drug for ¢t < 0. Also, learn p,, from observation y(0).
Setk = 0.

(b)  Weighting. For i = 1,...,N compute the estimated output from each particle as
3,k =p,—C 1 (k))xf(k). Then, evaluate the particles’ normalised importance
weights g (k)

L S =) — 4k
qi —p(y(k)b’z(k)) qi(k) = jlil N

(c)  Resampling. Resample N particles on the basis of the weights obtained in step (b)
using a residual resampling algorithm [28].
(d)  Time update. For each particlei = 1,...,N

(i) Kalman filter correction of the linear state estimate using the available
observation Z(k)

xj(klk) = xb(klk — 1) + Hy(k) (y(k) — po — Cai(K)xi(k|k — 1)),
with
H;(k) = Pi(klk — 1)Cq,i(k)S ™" (k)
Si(k) = Cai(k)P;y(klk — 1)C} (k) + R
Pi(k|k) = Pi(klk — 1) — H;(k)Cq,i(k)Pi(k|k — 1),

where H is the Kalman gain, S is the innovation covariance, and R is the
variance of noise signal w.

(ii)  Sample x via (9) and update the nonlinear states via (8), then calculate
Ag i (k) (k) and B (k) (k) using (7).

(iii)  Time update of the marginalised states (xf(k + 1|k)) via (6) and the state
estimate covariance matrix using
Pi(k+1lk) = Ad,i(k)Pi(k|k)A£i(k) + Q, where Q is the covariance
matrix of the state/input noise v.

(e) Iteration. Increase k — k + 1 and repeat over from step (b).

Controller selection
Controller selection is carried out by integrating the approximate probability distribu-
tion which results from particle filtering. The number of particles #; associated with each

j
of the best performance subsets listed in Table 1 is proportional to the probability of
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controller j being the correct one for insertion in the loop. In a weighted approach to con-
troller selection the drug infusion rate # can thus be computed as a weighted sum of the
control signals u; generated by each controller

_ 5 o
w=3 Ty T =g (10)

where 7; is the probability of the true parameters belonging to subset j and N is the total
number of particles.

Theoretical proofs of robustness

The use of the p synthesis controller design techniques gives a mathematical guaran-
tee of robust stability and performance as long as the true patient sensitivity value is
matched by the correct feedback controller (Table 1). Proper operation of the closed-loop
system hinges, therefore, on achieving adequately accurate identification of the patient’s
individual response characteristic.

The inferred parameter probability distribution generated by the particle filter
approaches the true p(x(k)|Z(0 : k)) for N — oo [29] and can be deemed a suitable
approximation if a sufficiently large amount of particles is used. Therefore, it is fair to
expect for the estimate to converge and, thus, for the system to deliver the required
performance, asymptotically in time. The presence of a numerical tool in the architec-
ture, however, makes it difficult - if at all possible - for a mathematical proof to be
developed. To the best of the author’s knowledge, no theoretical proofs of robust perfor-
mance exist for the several ‘robust adaptive control’ approaches described in the control
literature to date [30], and proofs of asymptotic stability have been developed in restricted
cases only (e.g. for linear-time-invariant Gaussian systems in [31]).

In a general formulation such as we consider here, not only would available proofs not
apply, but also asymptotic results would be clinically inadequate as the patient must be
successfully identified and controlled over a bounded time horizon. In light of the above,
while RAC-PF is equipped with conservatively designed controllers and very general esti-
mation tools, its ability to maintain stability and deliver the required level of performance
can, at this time, only be evaluated heuristically. We do so, in this work, using computer

simulations.

Numerical simulations
A broad computational simulation campaign was conducted in order to evaluate
the ability of the proposed adaptive control approach to control MAP through SNP
administration in a wide variety of conditions. To reflect the unpredictable nature of blood
pressure disturbances and patient parameter variations, a large number of cases were ran-
domly generated and simulated. All simulations involved a control horizon of 10,000 s
(approximately 2 h and 45 min), with a target MAP of 100 mmHg for the time period of 0
to 4,000 s and 80 mmHg for 4,000 to 10,000 s.

Two categories, or simulation streams, of hypertensive patients were simulated as
follows:

(@)  Relatively ‘settled’ patients, i.e. displaying elevated MAP (p, = 120 mmHg at
t = 0) with p ;. () modelled as a random, zero-mean, low-intensity additive
disturbance (in the range £6 mmHg)
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More ‘unsettled’ patients, i.e. displaying the same initial MAP as (a) but greater
intensity of random fluctuations (in the range £15 mmHg), as well as two step
increases in pqist (£) (+20 mmHg) at 2,000 and 5,500 s, modelling a worsening
hypertensive condition

Scenarios of controlled MAP reduction of 20 to 80 mmHg were deemed quite general

while clinically plausible.

The pgist () signal used in the simulations was generated by filtering the superposition

of a Gaussian white noise process and step signals (the latter only for stream b) with a

suitable low-pass filter to meet the frequency domain bound assumption of (4). The seeds

for the generation of all random processes were also randomised and changed for every

simulation: no two simulations in the campaign, therefore, would exhibit the same p(¢),

w(t) and v(¢) traces.
For each simulation stream, the following simulation batches were computed:

()

(i)

(iii)

(iv)

Forty simulations in which mid-range parameter values were chosen, i.e.

K =4 mmHg/(ml/h), « = 0.5, and T = 30 s and held fixed throughout the
control horizon

Eighty simulations in which the three model parameters K, o, and T were
randomly selected from the allowed ranges as per (3) and held constant

throughout the control horizon
Eighty simulations in which the initial values of the parameters were randomly

selected as in (ii) with piece-wise linear variations throughout the control horizon.
A random number of slope changes between 2 and 5 was selected for each run.
The slope of the ramp was also selected at random each time ensuring it would not

exceed the constraints of (3)
Eighty simulations in which the initial values of the parameters were randomly

selected as in (ii) with piece-wise exponential variations throughout the control
horizon. Between 2 and 5 changes were again randomly selected for each run. The
exponent was also randomly selected in such a way that the slope of the resulting

curve would not exceed the constraints of (3)
Eighty simulations in which the initial values of the parameters were randomly

selected as in (ii) with piece-wise quarter-sinusoidal variations throughout the
control horizon. Between 2 and 5 changes were again randomly selected for each
run. The target value for each change was randomly selected in such a way that the
slope of the resulting curve would not exceed the constraints of (3)

The main purpose of batch i was to help verify the ability of the approach to deliver

repeatable results. Batches ii to v were intended to test the ability of the control

approach to respond to a wide range of parameter variations (for examples of variation

trends see Figure 6). The total number of simulations was 720, corresponding to 2,000 in

silico patient hours.
Due to the large amount of available data, aggregate measures for the control and iden-

tification performance were adopted. For each simulation run, the following measures

were computed:

1.

Measures concerning control performance

® f.,t, - the convergence time (10% to 90% of transition) as the two MAP
setpoint changes are imposed
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Figure 6 Parameter variation trends. Examples of parameter variations for linear, exponential and
sinusoidal cases (simulation numbers shown).

| | |
2000 4000 6000 8000 10000

Time (s)

tie by10tyqs - the time (out of 10,000 ) y,.,s remained within &5, +10 and
415 mmHg of the setpoint r(¢), respectively

€max’ €min’ €avg - the positive and negative peaks and average setpoint tracking

error recorded over the control horizon

tPP ’ t“PP

provably performant (pp) or nonprovably performant (npp) pair as evaluated

- the time the RAC-PF controller and the true patient system form a

through w analysis [24], i.e. a pp closed-loop pair would achieve a
performance index A > 1 in Figure 4 (note: due to the inherent
conservativeness of u analysis, a npp pair does not necessarily indicate an
unstable or underperforming closed-loop condition, but only that there is no
mathematical proof of robust performance. At npp times, loop performance
should be evaluated from other indices)

L, - the time the infusion rate signal remained at the maximum allowed value

(controller saturation)

2. Measures concerning estimation of the response characteristic

t, - time (out of 10,000 s) for which the K subinterval deemed the most likely
by the particle filter, i.e. with the greatest 7r; (intervals as per best performance
in Table 1) contains the true simulated value of K

t; - time for which the K subinterval deemed the most likely by the particle
filter is a neighbouring interval to that containing the true value of K

t, - time for which the K subinterval deemed the most likely by the particle
filter is 2 intervals away from that containing the true value of K

K.,T

rel” = rel’
T and «, respectively (the mean of the particles is used to determine the

a,, - the mean relative estimation error for parameters K,

estimate)
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The simulation environment was programmed using Matlab and Simulink (Math-
Works, Natick, MA, USA) and run on a standard desktop computer (Intel Core 2 Quad
CPU, 3.0 GHz).

Results

Figure 7 shows the results of simulation v-b-54: a case featuring large variations in
the SNP response parameters over time and significant fluctuations in baseline MAP.
From the graphs, it can be readily appreciated that the proposed control approach tracks
the simulated time-varying response characteristics and meets the required performance

specifications.
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Figure 7 Results of simulation v-b-54. (a) Native MAP offset component p, (t) (blue) and controlled MAP
OULPUL Y66 (D) (red); the dotted lines indicate the 10 mmHg allowed error range. (b) Real value of K(t)
(red) and mean particle estimate (solid white) superimposed on particle density map; the dashed white lines
indicate the 15th and 85th percentile of the particle distribution. (¢) Subinterval probability results, the
superimposed numbers indicate the controller with the greatest probability. (d) Infusion rate signal u(t).
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For completeness and to provide context in the interpretation of the aggregate results
for groups of simulations, Table 2 lists the overall results for simulation v-b-54.

The aggregate results for all of the simulations are shown in Table 3. For each measure,
the mean value and standard deviation over the corresponding batch are displayed.

The results for batches i -a and i-b confirm the repeatability of results using the pro-
posed method. The standard deviation values are much lower than for other batches,
indicating that the system was able to deliver consistent outcomes, as required, when
applied multiple times to the same case. The fact that the standard deviation values are
not 0 can be explained in terms of the stochastic features present in both the patient
model and the particle filter. As no two simulations are identical, some variability in the
results exists even with parameters K, o and T being exactly the same.

When considering the other batches (i to v-a/b), the results show that control of MAP
was successfully achieved in all cases, with no instability or dangerous pressure drops
observed in any of the computed simulations. The controlled MAP trace was maintained
within £10 mmHg of the desired setpoint for over 94% of the time in any given batch of
simulations (considering M;, =~ — 20, i.e.9,404.74 s for the worst-performing batch v-b).
Similarly, the occurrence of temporary deviations > +15 mmHg from the setpoint was
prevented for over 98% of the time and peak tracking errors (€max, €min) had a magni-
tude of less than 20 mmHg at all times. The tracking of the setpoint was achieved with
negligible bias as shown by the very low value of €,y for all batches. It should be clarified
that the above statistics refer to the whole simulation (including the initial condition and
the two setpoint changes), thus suggesting that control performance remained entirely
adequate throughout the simulation campaign. Furthermore, performance was consis-
tent across simulation batches, indicating that the system can deal with time-varying
parameters regardless of the shape of the variations, as long as the assumptions of (3) are
met. Transition times te, also met the specifications and were contained below 10 min in
almost all cases, with the longest observed transition taking approximately 13 min to set-
tle. As could be expected, due to the simpler nature of the control task (lower disturbance),

Table 2 Aggregate results for simulation v-b-54

Parameter Result
to (s) 5,924
t1 () 3,442
t(s) 634
tpp (5) 9,716
thop (5) 284
Kel (%) 81
arel (%) —25
Teet (%) -22
te, ) 186
te, ) 332
toa (9) 0
tys (s) 6,558
te10 ©) 9,368
tigs () 9,980
€max (MMHQ) 16.7
€min (MMHQ) —14.07

(mmHg) 1.08




Table 3 Summary of results of the simulation campaign

Batch-stream

to ty t top thpp Krel Orel Trel te, te, tsat tes te10 ty1s €max €min €avg
[s] [s] [s] [s] [s] (%) (%) (%) [s] [s] [s] [s] [s] [s] [mmHg] [mmHg] [mmHg]

i-a 604 9,396 0 10,000 0 69 I —24 396 360 0 9,442 9,995 10,000 843 —833 0.16
(128) (130) (0) (0) ) (5.0) (3.0 (5.0) (46) (59) 0) (104) (14) 0) 0.72) (0.95) 0.05

i-b 5,986 4,014 0 9,640 360 40 —4.0 —20 397 332 0 8,752 9,968 9,999 11.00 —10.28 043
(788) (788) 0) (512) (512) (5.0 (3.0 (3.0 (74) (72) 0) (212) (147) 0.6) (1.46) (1.18) (0.06)

ii-a 4,926 3,790 1,280 9,826 167 63 3 25 390 375 0 9,356 9,944 9,994 8.56 —843 0.21
(4,338) (3,821) (2414) (252) (252) (79) (24) (54) (126) (101) ) 612) (146) (34) (1.98) (1.98) (0.22)

ii-b 4,804 4,443 716 9478 522 42 2 27 392 359 0 8,856 9,907 9,990 11.06 —9.85 043
(3,038) (2,682) (1,324) (576) (576) (54) (22) (57) (101) (75) 0) (868) (87) (40) (3.24) (2.98) (0.25)

iii-a 2971 5,358 1617 9,898 102 85 14 10 421 385 0 9,289 9,941 9,992 932 —897 0.24
(2,297) (2,166) (1,911) (204) (204) (73) (19) (26) (120) (110) 0) (435) (114) 42) (2.10) (2.72) (0.23)

iii-b 4,710 4,460 731 9,396 604 49 2.0 10 428 380 0 8,710 9,898 9,991 12.03 —10.94 0.60
(1,938) (1,772) (882) (694) (694) (39) (15) (24) (124) (104) 0) 612) (151) 41) (2.44) (2.90) (0.35)

iv-a 2,152 5,802 1,938 9,860 140 77 12 9 408 384 0 9,405 9,974 10,000 878 —8.51 0.21
(2,096) (1,945) (2,135) (207) (207) (59) (21 (25) (89) (96) 0) (398) (88) (15) (1.86) (1.72) (0.15)

iv-b 4,701 4,474 729 9,349 651 45 3.0 Il 408 366 0 8,860 9,936 9,995 1144 —10.15 0.50
(1,730) (1,744) (970) (796) (796) (38) (17) (25) (94) (101) 0) 471) (90) (31 (2.15) (1.95) 0.21)

v-a 2,834 5,350 1,689 9,898 102 94 13 12 419 404 0 9,164 9,930 9,994 9.95 —895 037
(2,159) (2,030) (1,344) (205) (205) (62) (18) (25) (110) (97) 0) (117) (116) (26) (2.30) (1.71) (0.36)

v-b 4,529 4,568 848 9,298 702 48 0.0 14 390 405 0 8,450 9,846 9,976 13.15 —11.76 0.68
(1,663) (1,534) (882) (871) (871) (31 (15) (26) (107) (124) 0) (674) (220) (80) (3.64) (3.84) (0.47)

Results are provided as the mean value across a batch of simulations, with standard deviations shown in parentheses. List of performance indices: t;, time the model identified with highest probability is the ith neighbour of
the true response model; tpp, time spent by the closed-loop system in a provably performant state; tnpp, time spent by the closed-loop system in a nonprovably performant state; X, average relative error in the estimate of

parameter X over a 10,000-s simulation; t, ,, transition time for first and second setpoint change; tsat, time of saturation of control action; t_, ;, time the controlled MAP remained within x mmHg of the target MAP;
o greatest positive and negative values and average MAP error over a 10,000-s simulation.
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the performance results for stream a were better than those for stream b, although only
marginally.

The results associated with the identification of patient parameters by the particle fil-
ter show that the system is tracked as it evolves through time (with £, and ¢, combined
representing about 90% of the total simulation time on average). However, the system
slightly but consistently overestimates K and delivers estimation errors K, of about 50%
o> on the other hand,
suggest that the latter two parameters are not dependably identified (there is poor con-

to 70% on average. The large standard deviation values for o, and 7,

vergence of the particle scatter with respect to « and T'). Although the estimation errors
may seem significant, the precision in identification is adequate in the context of the
required performance, since each controller can cater for variations of two- to fourfold
in the value of K, and for all possible values of « and T (Table 1). The bop result confirms
this by showing that the system pairs the patient with a suitable controller at most times,

with closer inspection of simulation data showing that ¢, is accrued mostly in the initial

nj
stages when the particle filter has not yet converged. Ni))ptably - and perhaps counterin-
tuitively at a first glance - identification of the patient response is more accurate for the
more challenging cases of stream b than for stream a as indicated by higher values of .
Each simulation took approximately 8 min to execute (corresponding to a simula-
tion time-to-real-time ratio of 1:20) using 1,000 particles. This number of particles was
found to deliver a reasonable compromise between accuracy in the results and computa-
tion time. A number of test simulations conducted ahead of the campaign did not show

noticeable improvements in the estimation results when run using 5,000 particles.

Discussion

We have presented RAC-PF, a novel approach for the control of uncertain, time-varying
systems, and tailored it to the case study of automatic closed-loop SNP administration for
the management of acute hypertension. Having adopted an underlying response model
which is, to our knowledge, the most general ever adopted in the literature (with regard
to the ranges of variability of parameters, the allowed rates of change and shapes of varia-
tions, and the presence of both random and non-zero-mean changes in p,(¢)), the system
delivered the required performance with no evidence of unsafe behaviour throughout
the extensive simulation campaign presented herein. We therefore propose that RAC-
PF may represent a viable solution to assist with automated control of hypertension not
only in the traditionally considered post-operative setting, but also in the more challeng-
ing intraoperative context, where rapid changes in a patient’s response characteristic may
occur [32].

Only a limited number of authors have considered automatic control of MAP during
surgery (although not specifically with SNP). The challenge of on-line adaptation to varia-
tions in the patient response has generally been addressed through ad hoc rules [33] which
mimic physicians’ clinical decision process [34]. The RAC-PF method is fundamentally
different. By adopting a dose-response model which incorporates uncertainty, u synthesis
allows the designer to conclusively determine a priori the minimum number of controllers
required to achieve the desired level of robust performance, while particle filtering tracks
the patient’s response as it evolves through time to inform correct controller selection. In
addressing the argument that methods for automatic drug administration may have been
dismissed on grounds of perceived safety in the past, we deem the transparent nature
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of RAC-PF, where an explicit relationship is retained between the estimated posterior
probability distribution of the patient response and the chosen control action, to be well
suited to clinical applications. A further advantage of this work is that the framework
is not specific to SNP and the same methodology could be used to design controllers
and estimators, given a reference dose-response model, for a different drug delivery
problem.

The results also support the viability of particle filtering in a real-time pharmacological
application. Particle filters are a very general estimation tool and can be applied to linear
as well as nonlinear problems, but are known to be computationally onerous. The fact that
simulations ran much faster than real time without requiring particular hardware or soft-
ware optimisation was therefore a notable positive finding. Particle filter methods have
been proposed to assist with the estimation of physiological systems and draw inference
from patient data in order to support clinical decision-making processes (see, e.g. [35]).
To our knowledge, however, such methods have been generally reserved for off-line com-
putations. Our work highlights the potential of particle filter as a viable tool for real-time
closed-loop system identification. As pharmacokinetic/pharmacodynamic models com-
monly combine linear and nonlinear dynamics [22], we anticipate that marginalisation
would be applicable to a broad class of problems in this area.

On the point of identifiability of the system, a number of relevant comments can be
made. Perhaps counterintuitively, the results show good control performance, but the
identification statistics point to somewhat imprecise parameter estimates. As well as
being a result of the underdetermined nature of the estimation problem (multiple uncer-
tain parameters and a single output), this outcome stems from a well-known trade-off
between control and identification in feedback systems [36]. The very purpose of a feed-
back controller is to suppress some of the dynamics from the controlled system, thus
the stronger the control action (performance), the lesser input-output information is
available to estimate the response characteristic. An extreme situation would be that of
a controller capable of forcing a perfect flat-line MAP output at all times: in such a sit-
uation no knowledge of the patient characteristic could be gathered (arguably, adaptive
control would not be required, either). The necessary imposition of performance con-
straints in our design, therefore, affects the precision of system identification. The fact
that the controllers were designed to cater for all values of & and T and, as a result, the
identification of these parameters was inaccurate, is a clear example of this trade-off.
Furthermore, accuracy in identification depends on the level of excitation of the system,
i.e. the amount of energy delivered by exogenous inputs (in this case, 7(t) and p,(t)),
which elicits observable dynamics at the output. Since r(¢) is mostly a constant signal,
excitation is provided mainly by the changes in p (). This explains why identification is
more accurate (greater £,) for the more disturbed simulations of stream b. It should be
remarked that the trade-off between identifiability and excitation is an inescapable one
and affects both traditional manual methods and computer-based solutions equally. A
notable question arising in the light of these considerations is whether the commonly
stated clinical goal of maintaining a patient in a settled state is a desirable one or whether
this is actually counterproductive when changes in a patient’s response must be timely
identified and acted upon. Our analysis suggests that a clinically acceptable, time-varying
MAP target would deliver greater system excitation and thus improve ongoing system
identification.
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Conclusion

Through the extensive simulation campaign presented in this manuscript, we have
validated, in silico, the methodology underpinning the novel RAC-PF architecture and
demonstrated its applicability to the problem of automatic closed-loop administration of
SNP for the control of MAP in a model of acute hypertension. These results provide a
strong motivation for the approach to be tested further in in vivo models (e.g. animal
testing).

We have also proven the viability of real-time computation of particle filters on con-
sumer hardware for the relatively simple SNP dose-response system. The analysis of other
case studies, including highly nonlinear and multiple-input-multiple-output systems, will
be essential to identify any limitations to the practical use of particle filtering in estimating
more complex pharmacological response models.

Finally, our analysis has highlighted the known and inescapable trade-off between iden-
tification and control in feedback systems and the role of system excitation in adaptive
control. While identification proved adequate for control in the SNP case study, this could
only be verified heuristically through simulations. In future work we plan to research
mathematical methods to quantify the trade-off and design clinically acceptable inputs
to guarantee dependable system identification, and thus greater theoretical guarantees of
robustness, for this and other automatic drug delivery applications.
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