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Abstract

This paper introduces the fundamental concepts of computational surgery by Garbey
et al. and proposes a road map for progress in this new multidisciplinary field of applied
investigation. Recognizing this introduction will serve as common ground for discussion
for both communities: surgeons and computational scientists; the scope of the
presentation is broad rather than deep. Indeed, the field of computational surgery is
sufficiently young that even the definition of computational surgery is still in the making.
In this introduction, we propose multiple areas of investigation where the intersection of
surgery and computational sciences is clearly in practice at the present time though
surprisingly unrecognized to date. We present examples of these intersections and
demonstrate the usefulness and novelty of computational surgery as a new field of
research. While some of the elements we present may be considered as basic for a
specialized investigator, the simplicity of the presentation is intended as a proof of
principle that basic concepts in computational sciences are of core value in solving many
existing problems in clinical surgery; we also hope this initial evaluation will highlight
potential obstacles and challenges. As the digital revolution transforms the working
environment of the surgeon, close collaboration between surgeons and computational
scientists is not only unavoidable but also essential to harness the capabilities of both
fields to optimize surgical care. We believe that this new collaboration will allow the
community not only to develop predictive models for the outcomes of surgery but also
to enhance the process of surgery - from procedural planning, to execution of procedures
and technology interfaces, to assessment of the healing process - investigations that will
potentially provide great impact on patient care far beyond the operating room.

Keywords: Computational surgery; Surgeons; Clinicians; Medical imaging; Robotics;
Numerical simulation; Mathematical models
Initial concepts and definitions
According to Wikipedia.org, “surgery (from the Greek: ξ∈iρouρyiκη, via Latin: chirurgiae,
meaning ‘hand work’) is an ancient medical specialty that uses operative manual and in-

strumental techniques on a patient to investigate and/or treat a pathological condition

such as disease or injury, to help improve bodily function or appearance.” The emphasis

in this definition is clearly on surgery as manipulation and instruments. According to

Henrichs et al. [1], surgical actions can be described in eight words: incision, exploration,

aspiration, resection, evacuation, extraction, repair, and closure. For most nonsurgeon ob-

servers, this description of surgery is indeed inaccurately reduced to the procedure per-

formed in the operating room. A review of the history of surgery shows however that the
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work of the surgeon goes beyond the technical performance of a procedure in a suite. Key

milestones in the birth of the discipline of surgery from ancient times include many

discoveries that are fundamental to any surgical procedure: invention of techniques and

devices to control bleeding, development of techniques and medications to provide anal-

gesia and anesthesia, and the development of agents and methods to treat surgical infec-

tion. Ambroise Pare's work [2] shows that progress in these fundamentals began long ago

and demonstrates the commonality of surgery as a discipline that addresses biological im-

peratives imposed by surgical disease. Consequently, a fundamental knowledge of biology

guides advances in the field, and further advances in surgery will not be reduced to im-

prove manipulations and technologies. Indeed, the unique genetic and biological platform

of individual patients will frame surgical interventions in the future.

Many contemporary advances in surgery are driven by enhanced manipulation fuelled

by research in medical imaging and robotics [3]. Similarly, research into the biological

basis of surgical disease, from genetic factors to integrative physiology, now greatly in-

forms the consequences of surgical interventions. Both research fields rely heavily on

computational methods. Medical imaging and robotics, as disciplines, are based on

mathematical modeling, physics and computing. Similarly, the field of biology has com-

pletely been transformed by computational methodologies, from DNA array techniques

and analysis to computational multiscale modeling of molecules, cells, and biological

networks in all physical scales.

We propose that computational surgery is first the result of the marriage of progress

in manipulation and biology. However, this new field goes beyond that fusion, presen-

ting a cohort of clinical specific challenges resists predictable scientific constructs. Sur-

gery as a science is by nature experimental. As a process, surgery is evolving from a

craft activity to an industrial process being performed in a challenging economical con-

text. Computer science has revolutionized the operating room: most new devices are

computerized; the operating room is filled with digital equipment that assists and re-

cords the operation. Quality and efficiency goals promote mutation of the individual

work of a surgeon toward a predictable, error-free sequence in a quantified world. The

scientific-recorded activity of surgery and its everyday use on patients produce enor-

mous volumes of digital data demanding enhanced methods for data representation

and medical informatics processing with the goal of improving the surgical process.

Computational surgery is then, additionally, a technique to improve the surgical

process by systematic analysis of a large volume of digital data.

To summarize, a definition of computational surgery [4] would be simply ‘Modern

Surgery enabled by computational science and technologies’. To refine this definition,

we present three categories of technical advances based in computational sciences that

have transformed surgery:
○ Augmented visualization

� Medical imaging that is integrated into the operating room equipment to

enhance the operative procedure, e.g., real-time imaging to guide resection,

ablation, or placement of devices
� Virtual reality that can augment the surgeon's vision by superimposing

nonvisualizable patient imaging on the operating imaging platform
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� Mathematical modeling and real-time calculation of the ‘invisible’, such as

mechanical forces, or spatial distribution. Future opportunities include the

visualization of the fluid shear stress in the arterial wall at the time of

vascular reconstruction or determination of optimal energy delivery rate radio

frequency ablation procedures

○ Augmented manipulation and robotics
� Smart devices for minimally invasive procedures to provide haptic feedback
� Stereotactic intervention technologies
� Real-time tracking
� Imaging interfaces with biomarkers
� Biosensor construct tracking
○ Reconstructive procedures and prostheses
� Personalized constructs for prosthesis design and implantation in orthopedics
� Design of regenerative tissue constructs to repair soft tissue defects and build

reconstruction templates
� Regenerative medicine and gene therapy to restore organ function or cure

specific diseases
While biological and technology research are obviously essential to each of these

areas, the unifying theme is that all of these components have to come together in an

integrated computational framework in the operating room (OR) to deliver a transla-

tional product to surgical patient care. We propose that fusion of research, with that

goal, as the discipline of computational surgery.

Interestingly, computational surgery incorporates modeling of both the manipulation

and the biologic response to it. It is fascinating for a neophyte to observe an abdominal

laparoscopic surgical procedure: the surgeon no longer looks directly at the patient but

rather views the patient's anatomy and diseased organs visually hidden inside an intact

abdominal wall on an AV display screen. What the surgeon sees is the image sent from

the digital camera slipped into the abdomen through a 5-mm incision. In the surgical

intervention with a robotic system such as the Intuitive Da Vinci robot, the distance be-

tween the patient and the surgeons gets even larger [5] as the operative manipulation

platform is separated from the patient's bedside to the opposite side of the room. The

surgeon no longer uses the tactile feedback of instruments on flesh and organs to guide

the procedure but rather relies on the three-dimensional images projected on the ro-

botic console to complete the procedure.

A more ambitious goal is to predict the outcome of a surgery by modeling the

patient's biologic response to the procedure. Important questions include prediction of

patient-specific result of an intervention. For example, can one predict the plastic re-

sponse of a vein graft? Is there a reliable way to decide between a heart transplant or a

heart-lung transplant? What will be the cosmetic outcome of breast conservative therapy

for breast cancer patients? Computational methods have already demonstrated value in

predicting tissue resection in patients with brain or liver tumors. Our hypothesis is that
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computational surgery will play a major role in predicting such surgical outcomes and

thereby improve surgery practices.

The computational background of that research in surgery relies on our ability to

build adequate multiscale models of the most complex biological system we encounter,

i.e., the patient! The Virtual Physiological Human (VPH) project may serve as a valu-

able tool to achieve that end. The goal of the VPH [6] is to provide a descriptive, inte-

grative, and predictive digital representation of the human physiology based on a

computational framework and a systematic approach, utilizing the encyclopedia spirit.

Many of the VPH projects (http://www.vph-noe.eu/) will facilitate the application of

computational surgery indeed.

We propose then a more complete definition of computational surgery: it is the ap-

plication of mathematics and algorithm design, enabling imaging, robotics, informatics,

and simulation technologies, incorporating biological and physical principles, to im-

prove surgery. Four key elements, the so-called IIIE, are fundamental to the design of

computational surgery: it is an interdisciplinary science, that requires the integration of

multiple technologies, and the work must be immersed in surgical practice. Last but

not least, computational surgery must follow ethical principles, as the primary focus of

the work is the use of computational science to improve the human health. To link the

world of engineering with surgery, one should remember the oath of Hippocrates - to

do no harm to our patients - an oath not typically reiterated in the training of scientists

who develop complex computational machinery. The next generation of surgeons and

computational scientist may indeed require a dual formation to master the field. We

will present in the next section some of the difficulties and promises to define a com-

mon ground for surgeons and computational scientists.

Challenges and opportunities

The main difficulty in working with cross-disciplinary research is our ability to speak

efficiently the same language. Surgeons or clinicians (SC) and computational scientists

(CS) not only have different scientific backgrounds but also have different working cul-

tures. While these differences seem onerous, we will present some strategies to enhance

the collaborative process. We base our discussion on several assumptions:

� Cross-disciplinary research will improve patient care more than silos of research.

� Effective collaboration will lead to higher value translational research.

� CS want to participate in translational research.

� SC want to improve patient care by engaging in research.

� CS need to partner with the SC to know more about clinical problems if their

research is to be relevant.

� SC need to partner with CS if optimal methods and tools are to be utilized in

certain types or research.

One obvious major difference in our disciplines is that surgical science is innately ex-

perimental, while computational science is steeped in reductionist methodology. Even

scientific publications for these two communities have very different structures. It is in-

teresting to observe that a scientific paper in the medical sciences will invariably follow

the classical structure: (1) introduction, (2) methods and materials, (3) results, and

http://www.vph-noe.eu/
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(4) discussion. This is extremely different than the way a scientific paper in mathe-

matics is written. The discussion that is often considered as the most important part

of a medicine paper holds little value in mathematical writing! In mathematics,

exploring the implications of your finding and judging the potential limitations

of your design belong to your peers.

However, one may argue that surgeons and computational scientist are practitioners

in their own scientific field. Computational science is the ‘clinical’ activity of a ma-

thematician. Each computational model situation is different by its parameter setting,

boundary conditions, and often nonlinear behavior. Most often, simulation is achieved

in unknown territory for the mathematical theory, i.e., existence and uniqueness of the

solution are not guaranteed by a theorem! The (full 3D) Navier Stokes equation, known

for a century, is a classical example.

A more profound difficulty in establishing collaborations is institutional in nature.

The demands in professional environments, institutional expectations, and financial

models of SC and CS are quite apart. A publication in a medical journal may not count

in the academic peer review of a CS. Spending significant time on the design of a com-

putational model for a SC might be considered as a distraction of valuable resources by

the CS's institution.

Surgeons as collaborators will always place the operating room first. In the hospital

environment, they have the daily reality of patient care to contend with and are ac-

countable for every action: they are accustomed to multitasking, have unpredictable

schedules, and have long-day working hours. On the other hand, the CS as collabora-

tors have more control of their schedules and have a good sense of organization. In this

context and by training, they may have good abilities to abstract clinical problems.

Meanwhile they may misrepresent reality by framing their thoughts in their own usual

abstract and theoretical models. One should remember that a proof of concept for one

case may not be scalable to clinical practice nor can be economically viable. In other

words, it is easy for a CS to miss the big picture. It takes significant effort and patience

to reach a level of collaboration between SC and CS that delivers clinical and transla-

tional results.

However, the intellectual challenge and educational value of such collaboration are

undoubtedly professionally rewarding. A new model of education and funding may be

necessary to facilitate that construction process between both communities. The net-

work of computational surgery CoSINe, which we initiated in 2008, should lead to new

proposals of dual training curriculum and research activities along these lines. The goal

of the next section will be to recall the general background of the surgery activity in

simple terms.

The continuum of surgery

By definition, a surgical operation is a medical procedure that violates natural bounda-

ries, most commonly the skin, but at times natural orifices such as the gastrointestinal

or genitourinary tract. The operative procedure is one step of a complex process that

follows the patient from the recognition of the disease to the assessment of the out-

come, as in Figure 1. In modern surgery, the patient is cared for by a multidisciplinary

therapeutic team that shares a global view of the problem. Figure 2 gives an example of

such organization for the treatment of lung cancer at the Methodist Hospital.



Figure 1 Simplified surgery process.
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The operation, performed in the unique environment of the operating room, is the cri-

tical step of the process; Figure 3 places the OR intervention at the center of a complex

multistep process. Yet, interestingly, the operation is often the shortest step in time as well

as the step that is most irreversible. The operation in a given patient has uncertain specific

features: anatomic variation, physiological derangement, variable personnel in the operat-

ing team, so it is therefore a step that may generate the most stress for all parties. The cul-

ture of surgery has long anointed the surgeon as the captain of the operating room ship.

However, more recent application of crew resource management methods to the operat-

ing room environment demonstrates that safety and communications improve when a

more horizontal leadership structure is applied, and the surgeon's role becomes one of

optimizing team performance as in the role of chef d'orchestre.

Let us look more closely at the surgeon's role in the operation. The surgeon's task is

to perform a specific therapeutic intervention to resolve a disordered clinical condition.

The surgeon needs to plan a sequence of steps and events, in an environment capable

of supporting the patient. The scope of surgery is vast - from minor skin procedures to

replacement of multiple abdominal organs. Yet, each requires knowledge, skill, and co-

ordination of a specific sequence of steps. The therapeutic goals of surgery can be cate-

gorized as follows:

� Removal of abnormal tissues. These are tissues that are infected, diseased with

tumor, or deformed and dysfunction. Examples include appendectomy or

cholecystectomy for infectious complications of the appendix or gall bladder,

mastectomy or colectomy for treatment of cancers of the breast or colon, or small

bowel resection for patients with structure due to the chronic inflammatory

condition of Crohn's disease.
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� Repair of damaged structures. Examples include operative fixation of fractured

bones, closure of abdominal wall hernias with native tissues or biomaterials,

valvuloplasty to repair heart valves damaged by endocarditis, or endarterectomy

and vein patch placement to repair blockages in arteries blocked by atherosclerosis.

� Replacement of organs and tissues. Examples include transplantation of new organs

to replace failed kidneys or liver and replacement of hip joints with synthetic joints

for joints destroyed by arthritis.

� Repair of disordered functions. Examples include restructuring of the

gastrointestinal track to limit food intake and absorption in patients with morbid

obesity as in Roux-en-Y gastric bypass or division of the vagus nerves to diminish

gastric acid secretion to reduce the risk of ulcer disease.

� Establish a diagnosis. Prior to modern imaging, surgery often provided an essential

window into the human body to identify the source of disease. With modern

diagnostic technologies, exploratory surgery is now a rare event.

The common features of all operations are tissue injury and the physiologic stress

response that tissue damage elicits, followed by the healing response. The initial tissue

response is local, i.e., within and surrounding the wound for small operations, while in

major procedures with significant tissue disruption, particularly that associated with in-

fection or significant blood loss, the stress response is systemic, i.e., a response impac-

ting the physiology of the whole body. Neurohormonal factors regulate the systemic

and local response to the local and systemic stress of surgery.

As noted, the process of surgery requires the careful orchestration of multiple steps:

accurate diagnosis, formulation of a procedural plan, risk assessment of the individual

patient and optimization of the patient for surgery, the operation itself, and then

postoperative care during the recovery period. This process can be described with an

algorithm to identify factors that interfere with optimal performance and execution.

The operation itself can be modeled with an algorithm. A highly structured and com-

mon operation, such as the laparoscopic Roux-en-Y gastric bypass has been carefully

coded as an algorithm: each step of the algorithm, each variation of the process is

spelled out and described in detail. However, even stringent execution of proscribed
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steps may be disrupted by unexpected findings of events during an operation - unex-

pected physiologic instability, failure of instrumentation and anatomic anomalies; in

each case, the surgeon must adapt and modify the procedure to ensure optimal per-

formance for the patient. Indeed, it is this variability in a given operation in a given pa-

tient that contributes to the lengthy period of training required for surgeons, totaling 5

to 10 years, for all surgical disciplines. Surgeons therefore, perhaps unwittingly, main-

tain working, real-time databases during an operative procedure. Data points tracked

include the following:

� Recall of history and physical findings

� Recall of the steps of the procedure including motions and instruments to be used

� Intraoperative access to imaging

� Knowledge of anatomy and physiology

� Personal experience

� Real-time tracking of the patient's physiologic status

The challenge is to store that information in a uniform digital format that will be

accessible and usable to the surgical team. There exist many regulatory obstacles that

make storage and transmission of patient data very challenging. Strict firewalls to

ensure patient privacy, certainly a most critical element of patient confidentiality, have

posed significant obstacles to the development of data sharing strategies to improve

care. Let us describe in the next section how the transformation from analogical to

digital the flow of information around surgery make this clinical engineering addition

to the team important.

From analogical to digital

There are three important sources of digital information that impact the development

of computational surgery.

The first kind of data is patient digital clinical information records that are main-

tained by hospital and physician office networks around the world. A ‘universal’ patient

digital record has long been debated by national and international agencies, but con-

sensus on specific features is not near. Currently, there are multiple formats of patient

digital records of varying quality and functionality, typically unique to a given health

care organization. Development of a dynamic health care digital record will be invalu-

able for the integration of health care systems to optimize patient care.

A second source of data closer to our interest comes from the fact that modern OR

generates huge monitoring data sets. These raw data for computational surgery are

digital video and all kinds of signals, such as vital signs, for each and every procedure.

This type of information might be unnecessarily too detailed to complete the medical

record of a patient but can still be systematically sampled to augment patient data.

There is a significant body of research work that analyzes rigorously the data flow gen-

erated by the OR system in order to improve surgery procedures. It seems that these

records have not yet been really used at the clinical scale and that the storage capability

and management at that scale might be often lacking.

A third source of digital information is the electronic medical research database,

PubMed (http://www.ncbi.nlm.nih.gov/pubmed/), which is supported by the National

http://www.ncbi.nlm.nih.gov/pubmed/
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Center for Biotechnology Information (NCBI) from the National Institute of Health

(NIH). It is the main web search system entirely devoted to the biomedical literature.

PubMed has more than 21 million citations from the biomedical literature including

MEDLINE, life science journals, and online books. It should be noticed that the web of

science system covers a broader area and is very relevant to search information

for computational surgery that is an interdisciplinary field linked to mathematics, com-

puter sciences, and engineering.

Overall, the three sources of information produce an impressive capability to produce

digital data for patient treatment and clinical research.

These three classes of digital database are ‘driven by the market’, in other words, the

economical competition for product and intellectual properties. They are amenable to

information technology methods and impact greatly our understanding and research.

Several new academic projects such as the virtual physiological human, mentioned earl-

ier, highlight the potential of integrating all available data on the human physiology into

a single coherent digital framework. This research action takes strong wills and efforts

from their initiator.

Data integration at the national and international level is also very challenging in the

context of economical competition and requires patient confidentiality. The immersion

of the surgery work into digital technology, thanks to medical imaging, medical robotic,

and health informatics, makes inevitable the dialogue between SC and CS. The main

question is: should clinicians be only consumers and can afford to ignore what is at

work behind the computer display, or should they fully participate in the design of

these new digital systems? The development of computational surgery is based on the

second option. To start, we will argue that a surgeon should question systematically

the computer answers offered by all these tools. Medical imaging comes with artificial

artefact, medical robotic is bounded by poor feedback mechanism, computer simulation

are often inaccurate, models can be invalid, and databases are polluted by various noise

such as missing data, typos, or inaccurate calibration. A critical thinking process is im-

possible without developing new skills beyond the traditional old surgery curriculum.

Progresses on computational methods and tools would be accelerated if SC gain expert-

ise on how these techniques work. It may even make the use of these new technologies

more safe and wise for the benefit of the patient.

Perhaps the main benefit of going from analogical to digital is the fact that docu-

menting a surgery procedure becomes rather systematic and may provide rigorous as-

sessment to progress. An example would be the digital representation of a high-volume

surgery intervention such as the Roux-en-Y gastric bypass. A total of 200,000 surgery

interventions of that nature are performed per year in the USA. According to the Atlas

of Minimally Invasive Surgery, the steps of a laparoscopic Roux-en-Y gastric bypass can

be listed as follows:

1. Access and port placement
– There is incision in left upper quadrant.

– Veress needle is placed.

– Pneumoperitoneum of 15 mm Hg is established.

– Optical access trocar is used to gain direct vision entry into the peritoneum.

– Four more ports are placed.



Bass and Garbey Journal of Computational Surgery 2014, 1:2 Page 10 of 18
http://www.computationalsurgery.com/1/1/2
– Abdomen is explored for pathology.

– Ports are placed under direct visualization.

2. Creating the jejunojejunostomy

– The omentum is placed between liver and stomach.

– The mesocolon is elevated, and ligament of Treitz is identified.

– The jejunum is measured 30 cm distal to the ligament of Treitz.

– The jejunum is divided.

– A Penrose is attached to the tip of the Roux limb.

– Its mesentery is divided with another load of the stapler, with Seamguard.

– The Roux limb is measured for 125 cm with a marked instrument.

– The Roux and biliopancreatic limbs are sutured together.

– A side-to-side jejunostomy is created.

– The enterotomy is closed.

– The Roux limb is run along its course to visualize the mesenteric defect.

– The mesenteric defect is closed.

3. Mobilizing the Roux limb to the stomach

– The omentum is divided using the harmonic scalpel.

– The Roux limb is carried anterior to the colon.

4. Sizing the gastric pouch

– An epigastric incision is made, and a liver retractor is placed.

– The left lateral lobe of the liver is elevated to expose the hiatus.

– The epigastric fat pad and angle of His are mobilized.

– The stomach is suctioned, and all intragastric devices are removed.

– The lesser sac is entered by creating a window over the caudate lobe.

– The left gastric artery is identified, and the lesser curvature is transected just

distal to this with a stapler and Seamguard.

– The stomach is then transected horizontally at this site.

– The stapler is then used to create the vertical staple line towards the angle of

His.

5. Linear stapled approach

– The Roux limb is sutured to the posterior part of the pouch.

– The Penrose is removed.

– A gastrotomy is performed in the horizontal staple line of the pouch.

– A gastrotomy is performed in the Roux limb about 5 cm from the tip.

– An end-to-side gastrojejunostomy is performed.

– The enterotomy is closed with a running suture.

– The endoscope is advanced from the anesthesia side to stent the anastomosis.

– A second layer of suture is placed.

– Leak test is performed.

– Liver retractor and trocars are removed.

Meanwhile, the OR equipment can deliver routinely video streams from the endo-

scope camera during the laparoscopic procedure as in Figure 4, and an outside view

from the OR traffic is also shown. Linking automatically the algorithm with the analysis

of the video is feasible [7]. It requires however a complex combination of image ana-

lysis methods and pattern recognition techniques. The result can be a precise time line



Figure 4 Laparoscopy image.
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that documents the algorithm: the chronology of each step is found within an accuracy

of the second, each laparoscope's motion can even be formally represented for further

analysis.

Let us suppose for a moment that this annotation of the surgery procedure can be

done automatically with perfect accuracy and is scalable to clinical conditions with no

significant additional investment. This would require indeed much more work inclu-

ding real-time high-performance computing and robust software engineering. All the

consequences of that new capability may not be fully understood and foreseen.

From the scientific point of view, it becomes feasible to compare cases, scale perfor-

mances, give milestones to achieve to trainees, and set some norms in a rather system-

atic way. Meanwhile, statistical methods may generate reliable time prediction on the

go. The working flow for that high-volume surgery can be optimized at the hospital

scale, like any other industrial process. This simple example shows the potential, limit,

and ethical issues raised by the synergy of surgery with computational methods. The

digital revolution has arrived in surgery and has combined imaging, procedural guid-

ance, virtual reality, miniaturization, and all spectra of new data from physiological to

molecular through genetic. This digital revolution has occurred much later than in

other professions such as aviation or banking. A new opportunity will be to establish a

scientific cooperation between SC and CS that would make the new transition the most

beneficial for patients. The next question that we will discuss is how one may combine

of all these sources of information to deliver a more sophisticated prediction of surgery

outcomes.

Predicting surgery outcome and improving the process

Most of the attention in general is devoted to the introduction of a new surgical pro-

cedure or the discovery of the therapeutic action of a new molecule. Somehow, both
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types of breakthrough are highly connected to the introduction of new technology and

provide well-identified milestones for the community. Our capability to predict the

surgery outcome is a scientific problem that progressed in a less obvious way.

Our hypothesis is that a complex multiscale model and a large-scale simulation will

play an increasing key role toward that goal. Many of the published works report on

the after math of surgery only in a statistical sense. For example, a clinical study on

breast conservative therapy will report on survival rate, risk of cancer recurrence, and

cosmetic defects for a carefully sampled population of patients. This careful approach

with clinical trial usually corrects or improves surgical practice at a slow path in time.

It takes several years to collect the data in a clinical trial. Additional time is required to

reach a consensus on the interpretation of the outcome. The nature of the result may

not be short of ambiguities. Uncertainties in the data set might be difficult to correct at

the later phase of analysis. As noticed earlier, thanks to the digital revolution, the infor-

mation basis of clinical studies gets broader and can be augmented by the simulation

outcome. For example, vascular clinical studies can be systematically documented by

medical imaging, hemodynamic simulation, as well as physiological and cell biology

measures.

Predicting surgery outcome is however an infinitely more challenging problem than a

posteriori analysis studies. Each patient is different. Response to surgery intervention

involved multiple scales in time, spatial structures, and network structures. Outcome

may depend heavily on the environment condition of the patient. It seems however that

prognosis is the logical step to make a decision or target improvement in surgery practice.

Because of the complexity of the plastic response of the body to the surgery intervention,

we believe that progress in that direction will not come overnight and should be at the

core of computational surgery. Perhaps a first and main objective should be the identifica-

tion of earlier signs of failures in the surgery outcome in order to fix the problem.

There are however several remarkable examples of surgery outcome predictive frame-

work that have been developed. Representative examples that we are familiar with are

the prediction of tumor growth, vein graft failures, and breast conservative therapy

cosmetic defect.

The pioneer work of Kristin Swanson and J.D. Murray [8,9] is an outstanding illustra-

tion of how mathematical modeling can be used to predict brain tumor growth (Figure 5).

This stream of work is devoted to gliomas. Gliomas generally are diffuse and invasive
Figure 5 3D representation of the anisotropic simulation of Gliomas with a patient. Courtesy of
Pr. Kristin Swanson.
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intracranial neoplasms accounting for about one half of all primary brain tumors. Unlike

most other tumors, gliomas are generally highly diffuse. In fact, experimental results indi-

cate that within 7 days of tumor implantation in a rat brain, glioma cells can be identified

throughout the central nervous system. For instance, even upon extensive surgical

excision well beyond the grossly visible tumor boundary, recurrence near the edge of

resection ultimately results (Kelley & Hunt [10]). A simplistic model of tumor growth

would be as follows:

Rate of change of tumour cell density ¼ Diffusion motilityð Þ of tumour cells
þ Growth of tumour cells:

This relation can be written mathematically as a reaction–diffusion equation:
∂c=∂t ¼ ∇ : D xð Þ∇ cð Þ þ ρc:

where c(x, t) is the density of cells at any position x and time t, D is the diffusion coeffi-

cient, and ρ is the linear growth factor. This equation should be equipped of the so-

called boundary equation to translate that the tumor propagates inside the brain. Fur-

ther, an initial condition should specify c(x, t0) at a given time. This information might

be extracted from a magnetic resonance imaging (MRI) brain scan of the patient. One

obtains then a well-posed mathematical problem for which the unknown c(x, t) can be

computed with a numerical algorithm. Reality is more complex because diffusion ten-

sor depends on the brain structure: there are major differences between gray and white

matters, and cells may migrate along the direction of the fiber tract. The beauty of the

family models generated by K. Swanson and her collaborators is that a single partial

differential equation, slightly more complex than the above,

∂c=∂t ¼ ∇ : D xð Þ∇ cð Þ þ ρc 1−cKð Þ−R c; x; tð Þ;

can translate into a technology that is scalable to the clinic for brain tumor assessment.

The mathematical model is simple enough to work with routine clinical data and

keeps the essential to be predictive. It follows somehow the Occam's razor lex parsimo-

niae which states that without being a scientific rigorous principle, it reminds us of

some pragmatism in model development. Eventually, the radiotherapy treatment [11]

and the true extent of the brain tumor and prognostic evaluation can benefit from this

mathematical modeling [12].

From the theoretical point of view of mathematical modeling, cancer might be viewed

as a complex multiscale system [13,14] that undergoes an evolutionary process [15]. A

new theoretical understanding of that nature may generate new approaches across the

spectrum of oncology. As demonstrated in the review article of Alan Lefor [16], the

role of the oncology clinician should be determined to translate that research into bet-

ter care for patients. Let us mention two examples of a mathematical work that model

cancer metastases with a clinical treatment perspective in mind. Colin et al. [17] de-

signed an optimized a reduced mathematical model to predict second-site lung tumor

growth for real cases. Further, Barbolosi et al. [18] presented an interesting mathemat-

ical theory of metastatic cancer to improve adjuvant therapy in oncology service. Both

papers are the result of a close cooperation between oncologists and computational

scientists.
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A second example, a where sophisticated mathematical modeling joint system biology,

come from the stream of work of Berceli et al. [19]; and address the understanding of

vein graft [20]. Even though significant advances in surgical techniques and endovas-

cular therapies have been achieved over the last decade, long-term success in arterial

revascularizations has been limited. Although bypass grafts and transluminal angioplas-

ties can provide immediate and dramatic improvements in perfusion, the half-life of

these interventions is relatively short and continues to be measured in months. Specific

cause/effect links between hemodynamic factors, inflammatory biochemical mediators,

cellular effectors, and vascular occlusive phenotype remain lacking (Figure 6).

The complex interplay between monocyte biology, local vascular hemodynamics, and

the intrinsic wall milieu determines the course of vascular adaptation, leading to

success or failure following the intervention. Specifically, Berceli et al. hypothesized that

a specific gene regulatory network, modulated by defined blood shearing forces, deter-

mines the global adaptive response of the vein graft wall following acute injury. Super-

imposed on this response is a driving inflammatory response, mediated by circulating

monocytes that are targeted to this site of injury. Modulated by the local hemodynamic

environment and their biologic phenotype, monocytes transmigrate at specific sites of

injury leading to dynamic instability and aggressive focal lesion development within the

vasculature. Using state-of-the art techniques in mathematics, engineering, and com-

puter science to integrate fundamental biologic and physical data, a predictive model of

vascular adaptation following acute intervention can be developed.

The dynamic interplay between physical forces, cellular inflammatory elements, and

an underlying gene regulatory network is critical [21,22]. The resulting model details a

highly integrated system where local perturbations in a single component rapidly
Leg Vein

Vein Grafts

1 year 
implantation

60%

40%

Figure 6 Vein graft response after transplantation.
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feedback to the other elements, leading to an updated but stable set point for the

network, or a condition with dynamic instability characterized by early failure of the

system. A detailed examination of the model system of Berceli et al. demonstrates such

a critical recursive loop between the local hemodynamics and the regional biologic

response of the vascular wall (Figure 7). Initial shear stress not only directs the primary

set point for the gene network but also modulates monocyte infiltration, both of which

influence the cell- and matrix-based remodeling response and define the local modifi-

cations in conduit geometry. These morphologic changes induce perturbations in local

shear resulting in new set points for the biologic response parameters.

Our third example comes from a stream of work on breast conservative therapy from

the two authors and their collaborators. Improving breast cancer treatment outcome

and survival depends on early detection and effective use of multimodality therapy:

surgery, radiation oncology, and hormonal and chemotherapy treatments. Surgery for

early-stage breast carcinoma is either total mastectomy (complete breast removal) or

surgical lumpectomy (only tumor removal) coupled with radiotherapy, commonly known

as breast-conserving therapy (BCT). The goals of BCT are to achieve local control of the

cancer [23,24] as well as to preserve a breast that satisfies the woman's cosmetic, emo-

tional, and physical needs. While most women undergo partial mastectomy with satisfac-

tory cosmetic results, in many patients, the remaining breast is left with significant

cosmetic defects including concave deformities, distortion of the nipple-areola complex,

asymmetry, and changes in tissue density characterized by excessive density associated

with parenchymal scarring [23]. These flaws have been reported to contribute to poor

body image and psychological distress in some patients. Research efforts to improve the

surgical outcomes of breast-conserving therapy in regard to prediction of cosmetic and

functional outcome are very limited. To our knowledge, we are the first team to work on

a computational framework designed to predict BCT outcomes and explore targets for

improvement. This focus of our research goes beyond classical tissue mechanics and
Molecule
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Figure 7 System biology approach for vein graft adaptation.
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incorporates novel important variables into the model including tissue plasticity and the

dynamic of tissue healing and repair, both primarily and in the setting of radiation

therapy. Our overall hypothesis is that the complex interplay among mechanical forces

due to gravity, breast tissue constitutive law distribution, inflammation induced by radio-

therapy, and internal stress generated by the healing process has a dominant role in deter-

mining the success or failure of lumpectomy in preserving the breast shape and cosmesis.

The model should encompass multiple scales in space, from cells to tissue, and time, from

minutes for the tissue mechanics to months for healing [25-30]. We use a modular

method coupled with mathematical models and corresponding software for patient-
Figure 9 Architecture of the virtual surgery tool box.
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specific data to test our hypothesis and refine the model [31,32]. We have designed a pilot

study that includes women with breast cancer who have been elected to undergo BCT at

the Methodist Hospital in Houston, TX, USA. Patients will undergo preoperative imaging

(mammography, ultrasound, and MRI) prior to lumpectomy surgery. Intraoperative data

points regarding the surgical technique and surgical breast specimen will be collected and

recorded in a database to correlate with preoperative imaging and pathologic criteria. Pa-

tients will be followed sequentially throughout the postoperative period by physical exam-

ination, surface imaging, ultrasound imaging, and radiologic evaluation to assess changes

in breast tissue, contour, and deformity. The patient results will be compared with the

predictive model based on ‘virtual’ lumpectomy. The final goal of that study is to provide

a graphic user interface described in Figure 8 to the clinician that hides the complexity of

the model and provides estimates on patient cosmesis outcome. Figure 9 shows the

schema of the multiscale modeling at work behind the scene. This tool should be used as

an additional rational method to complement the dialogue between the clinician and

patient prior surgery! However, in the end, it might also be used to produce new digital

data to deeper our understanding of internal healing in women's tissue breast.

To conclude this section, one should remember the quotation of Box, George E. P.

[33]: ‘Essentially, all models are wrong, but some are useful.’

The colored picture produced by the software is not the reality but a representation

of a virtual reality. The mission of computational surgery is to deliver models that scale

in clinical conditions and have reliability. This cannot be achievable without close

cooperation between surgeons and computational scientists. In the next section, we will

summarize the general keys for success that should the companion on the road map

for computational surgery.

Conclusions
Each of the surgical functions - repair of parts, replacement of parts, and repair of func-

tion - can potentially be augmented with the use of computational surgery methods. The

purpose of collaborations between CS and SC are to use the tools of computational

science to improve these functions. The assessment of new methods should address the

ability of the surgeon and the team of health care providers caring for the patient

throughout an episode of surgical intervention. We should in particular develop a new

curriculum and joint degree programs to give an opportunity to our students in medicine

and computational science to work in synergy along these lines. The opportunities are

many.
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