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Abstract

Electrocardiogram (EKG) monitoring is a common standard of care across all
operating rooms and intensive care units. Studies have suggested that respiratory
variations in the EKG R wave amplitude (EKGv) can be used as an indicator of fluid
responsiveness in mechanically ventilated patients under general anesthesia, but to
date all calculations of variation have been done by hand. The aim of this study was
to assess if a computer-automated algorithm could compute and monitor EKGv with
the same precision as manual measurement. Batches of 30 s each of EKG lead II
waveforms were recorded during surgical procedures with mechanical ventilation. R
wave amplitude variability was assessed both manually and by automated algorithm.
For both calculations, wave height was defined as R wave peak minus preceding Q
wave trough, and the minimum and maximum amplitudes determined for each
respiratory cycle. EKGv was calculated as 100 × [(RDIImax − RDIImin)/(RDIImax +
RDIImin)/2]. Fifty-seven batches of waveforms were calculated. We found that our
computer-automated algorithm calculation of EKGv was significantly correlated to
manual measurements (r = 0.968, P < 0.001). Bland-Altman analysis also showed a
strong agreement between automated and manual EKGv measurements (bias
0.13% ± 3.06%). The observed correlations between the manually and automatically
calculated EKGv suggest that our current computer-automated algorithm is a reliable
method for calculating EKGv. Validation in prospective volume expansion studies will
be needed to assess the true clinical utility of this automated measurement.
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Background
The first line of therapy for hypotensive patients in critical care settings is usually

intravenous fluid infusion. Fluid responsiveness studies, however, suggest that more

than 50% of the time fluid therapy does not result in the expected volume expansion

response: an increase in stroke volume [1]. Such studies underline the need for predic-

tors of fluid responsiveness in order to identify patients who can benefit from volume

expansion and avoid the negative effects of ineffective or over-expansion.
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Recently, more studies have been done on predictors of fluid responsiveness in re-

sponse to a fluid challenge, or predictors of changes in stroke volume and cardiac out-

put. Existing static predictors of fluid responsiveness such as central venous pressure

(CVP), pulmonary capillary wedge pressure (PCWP), and left ventricular end diastolic

area have been shown to be nonpredictive of fluid responsiveness [2,3]; while respira-

tory induced variation in circulatory-based variables such as pulse pressure (PP), stroke

volume (SV), and plethysmographic waveform (PV) have been shown to be predictive

[4]. Pulse pressure variation (PPV) and stroke volume variation (SVV) are already

widely accepted and used in clinical settings for fluid optimization [5]. However, both

predictors rely on invasive blood pressure measurements and are therefore not available

for many low-to-moderate-risk surgical patients. While noninvasive dynamic predictors

of fluid responsiveness such as plethysmographic waveform variation index (PVI) exist,

PVI is a peripheral measure and is subject to changes in vasomotor tone and perfusion.

There is an opportunity to improve currently available predictors of fluid responsive-

ness by providing a noninvasive dynamic predictor that is cheap, easy to use, effective,

and a part of the standard care in all surgical patients.

Respiratory variation in the EKG lead II R wave amplitude (EKGv) has been shown to

correlate with PPV and SVV in mechanically ventilated patients under general anes-

thesia and to reflect intravascular volume status [6-8]. EKGv relies on the ‘Brody effect’

theory [8], the idea that the left ventricular chamber size directly influences the R wave

amplitude (i.e., an increase in ventricular preload induces an increase in R wave ampli-

tude). During positive pressure ventilation, a preload-independent heart will not experi-

ence large variations in cardiac volume and thus the resistance across the heart tissue

and, consequently, the QRS wave amplitude, will not have large variations [6]. For a

preload-dependent patient, the large changes in cardiac volume induced by respiration

will result in a corresponding large change in the measured QRS wave amplitude for

the same reasoning. Since changes in R wave amplitude from lead II are induced by sig-

nificant rapid LV preload changes and have been shown to correlate well with PPV and

SVV [9,10], the EKGv for this study was calculated from lead II R wave amplitude

(RDII) variations.

Currently, the only method for EKGv calculation is through manual measurement. In

response to the need for an accurate and dynamic calculation of EKGv in the clinical

environment, the aim of this study was to develop a computer-automated algorithm

and assess its accuracy compared to manual measurements in correctly identifying R

wave amplitude variability.

Methods
This study was approved by the University of California, Irvine research ethics commit-

tee with waived written informed consent. All patients in the authors’ university hos-

pital are informed that de-identified data may be collected for research purposes. All

monitoring used in this study is considered part of standard care for patients.

Patient selection

The inclusion criteria for study patients were as follows: adult patients greater than

18 years of age, undergoing elective open abdominal surgery, classified as ASA 2 or 3,

equipped with a standard 5-lead EKG, and undergoing mechanical ventilation with
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constant respiratory frequency and in a volume control mode with at least 8 mL/kg

tidal volumes. The major exclusion criteria were as follows: patients with cardiac ar-

rhythmia, right ventricular failure, left ventricular ejection fraction <40%, PEEP >5

cmH2O, and with a spontaneous breathing cycle detected on ETCO2 tracing. No modi-

fications in anesthesia care were required for the study. A standard 5-lead electrocar-

diogram (EKG) was continuously displayed on a GE Healthcare monitor (GE Healthcare,

Milwaukee, WI, USA) by standard monitoring electrodes (Novaplus, Irving, TX, USA).

The standard 5-lead EKG placement used included the four limb electrodes (RA,

LA, RL, LL) and the precordial lead V5. Extra care was taken to ensure that the standard

5-lead EKG placement was followed.

Data acquisition and recording

EKG waveforms were collected on a laptop computer using an Ethernet port of the Solar

8000i anesthesia workstation and multiparameter bedside monitor (GE Healthcare,

Milwaukee, WI, USA). Utilizing the data collection software (Visual Studio 2005,

Microsoft, Redmond, WA, USA) developed by our research team for communica-

tion with the GE workstation, EKG waveforms were simultaneously digitalized and

continuously recorded on the laptop computer with a sample rate of 240 Hz for a

total of 10,000 samples (42 s) per data batch.

Data analysis

From the recorded EKG waveforms, EKGv was calculated offline manually and by

computer-automated algorithm. EKGv was defined as the relative difference in ma-

ximal (RDIImax) and minimal RDII (RDIImin) amplitude according to the follo-

wing formula [6]:

EKGv %ð Þ ¼ 100 � RDIImax−RDIImin
RDIImaxþ RDIIminð Þ=2ð Þ

For manual determination, the manual EKGv calculator assumed implied respiratory
cycles based on observed variations in the RDII amplitude. RDII amplitude was defined

as the difference between a distinct RDII peak and respective trough. The manual

EKGv calculator looked at the changing slopes of the RDII amplitudes and assessed

where the maxima (RDIImax) and minima (RDIImin) of the slopes were to the best of

his ability. He then chose three distinct RDIImax amplitudes that best represented the

data batch and their respective adjacent RDIImin to calculate a total of three EKGv

values per data batch (Figures 1 and 2). The median value was used as the representa-

tive of the manually determined EKGv (EKGvman).

For automated determination, all RDII peaks and troughs were automatically de-

tected and used in the calculation of EKGv (EKGvauto) by an algorithm written in

Matlab (Matlab R2011a, MathWorks Inc., Natick, MA, USA) (Figure 3). The steps of

the algorithm are detailed below:

Step 1. Set upper and lower limits for R peak detection: An automatic R peak detection

algorithm is used to detect every R peak in a given data batch of 10,000

samples. Peak detection begins by creating upper and lower limits for potential

R peaks. The algorithm first performs the local maxima detection using



Figure 1 EKG lead II waveform recording over one respiratory cycle. RDIImin and RDIImax were
defined as minimum and maximum R wave amplitudes of one implied respiratory cycle. These variables
were then used to calculate a single EKGv.
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MatLab’s max function on every 100 data points for a total of 2,000 data

points or 20 local maxima. The mean ± standard deviation of this list of local

maxima is then calculated, and any local maxima in this list not within those

limits are considered noise and removed from further analysis. The R peak

upper and lower limits are then calculated as the mean ± standard deviation of

the final list of the first local maxima.

Step 2. Peak detection: The algorithm searches for the local maxima, or R peak, in

every 100 data points using the calculated R peak upper and lower limits and

identifies the sample location corresponding to the R peak. Then the algorithm

looks to the closest neighbors of the detected R peaks to ensure the correct

local maxima was detected and corrects the R peak and location or eliminates

the detected R peak if necessary. The R peak detection limits, as well as this

additional step, help to eliminate the identification of incorrect R peaks due to

noise. If greater than half the number of detected R peaks were eliminated
Figure 2 A full 10,000-sample (42-s) EKG lead II waveform recording in an illustrative patient.
RDIImin and RDIImax were identified for three implied respiratory cycles across a 10,000-sample (42-s) data
batch to calculate a total of three EKGvs (EKGv1, EKGv2, EKGv3). The manual measurements of respiratory
variations in EKG lead II R wave amplitude were calculated as (RDIImax − RDIImin)/[(RDIImax + RDIImin)/2].
The representative EKGvman was calculated as the median of EKGv1, EKGv2, …, EKGvn.



Figure 3 Schematic diagram of automatic calculation of EKGv. Algorithm steps in the automatic
calculation of EKGv from the continuous recording of EKG lead II waveforms from a standard OR monitor.
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during this step, the data batch was considered unanalyzable by the algorithm.

Heart rate is estimated as the total number of R peaks divided by the length of

sample time (42 s).

Step 3. Trough detection: Recalling the list of identified R peaks, another algorithm

searches for the trough preceding the peak. The algorithm takes relative slope

information backwards from the R peak; from right to left of the signal, this

would consist of first a negative slope (R to Q), followed by a positive slope

(Q to trough), then a zero or negative slope (trough). If a trough is not

detected, then a nearby data point from the identified Q point is used as an

estimate of the trough.

Step 4. RDII amplitude calculation: The RDII amplitude is calculated from the

difference between R peaks and corresponding troughs. Upper and lower

limits of RDII amplitudes are the mean ± standard deviation of all calculated

RDII amplitudes. If the standard deviation of the RDII amplitudes is very

large, the upper and lower limits are used to eliminate any values outside of

the limits.

Step 5. EKG variability estimation: Relative amplitudes and slope information are used

to identify the minima and maxima (RDIImin and RDIImax) of the RDII

amplitudes to estimate the respiratory cycles and calculate EKGvs. The EKGvs

for each respiratory cycle are then calculated from the previously stated

formula using corresponding RDIImin and RDIImax. All calculated EKGvs

were then filtered through an upper and lower cut-off limit of the mean ±

standard deviation and averaged for a final reported EKGv. The averaged value

was used as the representative computer-automated algorithm calculation of

EKGv (EKGvauto).
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Statistical analysis

The normality of distribution of EKGvman and EKGvauto values was tested using the

Kolmogorov-Smirnov test. In the case of a normal distribution, the parametric Pearson

test was used to assess correlation. EKGvman and EKGvauto were also compared using

Bland-Altman analysis [11]. A receiver operating characteristic (ROC) curve analysis

was then performed for EKGvauto varying the discriminating threshold of this param-

eter to determine the ability of EKGvauto to discriminate between patients with an

EKGvman > 15% and EKGvman ≤ 15%. This threshold was chosen based on a previous

study by Lorne et al. which determined that the inconclusive limits of changes in stroke

volume (ΔSV) ranged from 13% to 15%, and that EKGv > 15% was able to accurately

predict ΔVTI > 15% [10]. In all cases, a P value less than 0.05 was considered statisti-

cally significant. All statistical analyses were performed using SPSS (SPSS 13.0, Chicago,

IL, USA). Data are represented as mean ± standard deviation.

Results
Fifty-seven distinct data batches were collected in this study from 15 patients. Eleven

data batches were subsequently excluded: Nine batches were excluded due to high

levels of noise that did not allow for reasonable analysis either by hand or by the

algorithm, and two batches were excluded due to incomplete data. Noise was as-

sessed visually and batches were determined unanalyzable if no distinct R peaks or

troughs could be seen, as occurs during interference from electrical cautery de-

vices. Incomplete data was defined as data batches with interrupted data collection

and consisted of less than the complete 10,000 sample total.

Data description

Across all data batches, heart rate was 84 ± 17 beats per minute with a range of 40 to

128 beats per minute. Respiratory rate was 17 ± 4 breaths per minute with a range of 8

to 25 breaths per minute. Heart rate to respiratory rate ratio was 5 ± 1 beats per breath

with a range of 2 to 11 beats per breath. Average EKGvman was 11.2 ± 5.4% with a range

of 2.7% to 20.3%. Average EKGvauto was 11.0% ± 6.0% with a range of 1.4% to 21.4%.

Data analysis

Both EKGvman and EKGvauto were found to be normally distributed with P = 0.478 and

P = 0.468, respectively. Consequently, the relationship between the two variables was

tested using the Pearson correlation test. There was a statistically significant correlation

between EKGvman and EKGvauto (r = 0.968, P < 0.001) (Figure 4). Bland-Altman analysis

showed a strong agreement between EKGvman and EKGvauto (Figures 4 and 5). The bias

for the automated algorithm was 0.13% with 95% confidence intervals of ± 3.06%. The

receiver operating characteristic curve assessing the ability of EKGvauto to predict

EKGvman > 15% is shown in Figure 6. The area under the curve was 0.98 ± 0.01. An

EKGvauto cut-off value of 15% accurately predicted EKGvman > 15%, with a sensitivity of

92% and a specificity of 94%.

Discussion
This study demonstrates that our custom algorithm for automated calculation of re-

spiratory variations in the EKG waveform (EKGv) has a good agreement with manually



Figure 4 Statistical analyses. (A) Relationship between EKGv calculated manually and EKGv calculated
by the automated algorithm. (B) Bland-Altman analysis showing the agreement between EKGvman and
EKGvauto.
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calculated EKGv and has potential clinical applications for detection of fluid res-

ponsiveness in patients undergoing surgery with mechanical ventilation and general

anesthesia.

Predictors of fluid responsiveness are important in anesthesia for the accurate iden-

tification of patients who can benefit from volume expansion, or cardiac output op-

timization, and avoid negative outcomes associated with hypovolemia or hypervolemia

[12-15]. Studies have shown that cardiac output optimization cannot only decrease the

cost of surgery but can also improve postoperative outcomes such as length of stay in

the intensive care unit, length of stay in the hospital, and incidence of postoperative

nausea and vomiting [4]. Presently, dynamic parameters of fluid responsiveness, such

as PPV, SVV, and PVI, have been developed and can predict the need for fluid adminis-

tration to improve cardiac output. However, PPV and SVV require invasive blood pres-

sure measurements that are not necessary for all surgical patients, and PVI, while

noninvasive, is limited by changes in vasomotor tone and perfusion [16]. EKGv pre-

sents a way to have an accurate predictor of fluid responsiveness, while being noninva-

sive, widely available, and independent of vasomotor tone. Our study here suggests this



Figure 5 Illustrative examples of corresponding EKGvman and EKGvauto calculation results. EKGvman

and EKGvauto calculation results for low-to-high respiratory variations in the EKG lead II R wave amplitude.
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new index can be measured at the bedside in the clinical environment in patients

undergoing surgery with mechanical ventilation and general anesthesia.

In 1956, Daniel A. Brody described the Brody effect [8]. The Brody effect suggests a

direct relationship between intraventricular blood volume and R wave amplitude [8].

This is due to the electric inhomogeneity remote from the heart and its effect on the
Figure 6 ROC curve analysis. Ability of automated algorithm calculation (EKGvauto) of variation in R wave
amplitude in lead II to predict a manual calculation (EKGvman) of variation > 15% (receiver operating
characteristics curve).
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transmission of myocardium depolarization to the body surface. Intracardiac cavity

blood mass has a resistivity of about 160 Ω cm, and the cardiac muscle resistivity aver-

ages about 250–550 Ω cm [17]. The heart is surrounded by the lungs which have a re-

sistivity of about 2,000 Ω cm [17]. Thus, the conductivity increases tenfold from the

lungs to the intracardiac blood mass, and the applied EKG lead field path includes the

conductive intracardiac blood mass. As a consequence, the applied EKG lead field has

an increased sensitivity to radial dipoles (when the progress of myocardial excitation is

radial to the blood mass during the initial phases of ventricular depolarization) and

decreased sensitivity to tangential dipoles (when the progress of myocardial excita-

tion is tangential to the blood mass during the later phases of depolarization) in

the cardiac muscle area. The effect has been further verified by other studies [18].

Then the volume of intracardiac blood may also affect the R wave amplitude, i.e.,

increased/decreased volume leads to an increase/decrease in the R wave amplitude.

Thus, variations in ventricular end diastolic volume can affect variations in the R

wave amplitude, which is generated at the end diastole when the intraventricular

volume of blood is highest.

Several algorithms have been proposed for other dynamic predictors of fluid respon-

siveness, such as PPV, SVV, and PVI [19-23]. The presently proposed algorithm for

EKGv was initially created to test if this automated algorithm measurement was feasible

and as accurate as hand measurement. Using ideas similar to those used in the auto-

mated estimation of PPV from an arterial blood pressure signal [23], this proposed

algorithm for EKGv automatically detects peaks and troughs of the lead II EKG wave-

form and then detects R wave amplitude minima and maxima to calculate EKGv. The

automated algorithm EKGvs reported in this study are an average over a 42 s interval,

and no physiological background such as the number of respiratory cycles or cardiac

arrhythmia is considered in the automated EKGv calculation. We decided on this to

keep our algorithm computationally nonintensive. Also, there are existing clinical de-

vices that sample at a defined time interval without identifying respiratory cycles. For

example, the PiCCO™ device (Pulsion Medical Systems, Eindhoven, The Netherlands)

calculates SVV from the arterial pressure waveform using a 20-s moving window

[24,25]. Similarly, the LiDCO pulseCO™ device (LiDCO Ltd, London, UK) measures

PPV and calculates SVV from the arterial pressure also using a 20-s moving window

[25]. In our algorithm, the continuous changes of the R wave amplitude for this

algorithm were assumed to imply respiratory cycles. For example, Figure 3 shows four

distinct R wave amplitude slopes over 4,000 samples, which under this assumption

would correspond to an estimate of 4 breaths/17 s or 14 breaths/minute (at a sampling

rate of 240 Hz, 4,000 samples corresponds to approximately 17 s). While this may be

an overestimation of the respiratory rate of this patient, the representative EKGv used

is an average of EKGvs filtered through mean ± standard deviation limits. The resulting

EKGv then for a 42-s window with eight calculated EKGvs would most likely be the

average of six to seven post-filtering EKGvs. This would correspond to a more reaso-

nable estimate of 6 to 7 breaths/42 seconds or 9 to 10 breaths/minute. The Aboy et al.

algorithm for PPV estimation utilizes a calculation over time intervals that is less

dependent on respiratory phase shifts and eliminates the need of simultaneous airway

pressure recording by utilizing a filtering method for respiratory frequency in the

arterial pressure waveform [23]. It has also been shown, however, that PPV and
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SVV analysis by time intervals may be consistent for respiratory rates >15 breaths/min,

but unstable at respiratory rates <10 breaths/min [25]. This suggests that future

work on the algorithm may need to be done to incorporate ways of discerning re-

spiratory cycles using frequency filtering or to validate the use of R wave amplitude

variations over time intervals to currently accepted dynamic parameters such as

PPV and SVV.

There are some limitations to the current comparison between our algorithm and the

hand-calculation method. The algorithm was not tested on any patients with left or

right bundle branch block due to the inability of our current algorithm to analyze such

patients for EKGv. Only patients with normal sinus rhythm, stable hemodynamics, and

mechanical ventilation in volume-controlled mode were included in this study. While

the current R wave peak and trough detection appears to be robust against noise like

electrocautery and baseline drift, further work needs to be performed on the algorithm

to include handling of abnormal heart rhythms, conduction abnormalities, and error

catching. Moreover, it is likely that conduction abnormalities will disrupt the electro-

mechanical relationships which give rise to EKGv such that EKGv may not even be pre-

dictive in this population.

Other limitations of this study include the lack of lung property measurements, the

lack of confirmed respiratory cycles via airway pressure recordings for a stronger man-

ual measurement of EKGv, and a lack of PPV data for comparison. We did not measure

lung volume or lung mechanical properties, and it is possible that these could affect

EKGv and its ability to assess fluid responsiveness. However, this effect has yet to be

studied. Thus, further studies will need to be done to answer this question. On the

other hand, EKGv is defined as respiratory variations in the EKG waveform per respira-

tory cycle to respiratory cycle. One would assume that lung volume and lung mecha-

nics should not change during the period of one respiratory cycle, so the variation in

these lung properties may not affect EKGv. PPV data was not collected in this study be-

cause fluid responsiveness was not the primary goal, but at some point a comparison to

an established dynamic predictor as well as testing for actual prediction of fluid respon-

siveness will be needed. Also, only discrete EKGvs over 30-s intervals were compared

for analysis and not continuous EKGvs over longer periods of time. Future studies

will include accuracy of a real-time, continuous EKGv automated calculation and

comparison of the algorithm to the currently accepted dynamic predictors of fluid

responsiveness.

Conclusion
Based on the current data and potential for the automated continuous calculation of

EKGv as a noninvasive predictor of fluid responsiveness, our goal is to continue to re-

fine the current algorithm to calculate respiratory variations in the RDII waveform

amplitude, with the long-term goal of using the algorithm in the clinical environment

as an automated tool to predict fluid responsiveness during surgery. Initial analysis in-

dicates a significant relationship and a strong agreement between manual and the auto-

mated algorithm calculation of EKGv.
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