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Abstract

Multiple sclerosis affect over 2.5 million people world-wide. This autoimmune disease
of the central nervous system causes damage to the insulating myelin sheaths around
the axons in the brain. The disease progresses at different rates in different people and
can have periods of remission and relapse. A fast and accurate method for evaluating
the number and size of MS lesions in the brain is a key component in evaluating the
progress of the disease and the efficacy of treatments. Manual segmentation is slow
and difficult and the results can be somewhat subjective. It requires a physician to
consider several MRI slices across multiple modalities. The power and speed of
computer systems provide an obvious avenue to help. While many automated
methods exist, they have not reached human-level accuracy of the segmentation
results. There exists a need for a robust, fast and accurate method to improve the
results of automatic MS lesion segmentation methods. We propose a post-processing
stage to improve the segmentation results of an existing system. It uses two different
strategies to improve the segmentation results of an automated system based on
whole-brain tissue classification and lesion detection. The first strategy leverages the
current processing system at a granularity finer than the whole brain to detect lesions
at a local level. This reflects the way that a physician considers only a part of the brain at
a time. It then combines the series of local results to produce a whole-brain
segmentation. This approach better captures the local lesion properties and produces
encouraging results, with a general improvement in the detection rate of lesions. The
second method dives deeper and looks at the individual voxel level. Just as a physician
might look more closely at a lesion, it considers the local neighborhood around a lesion
detection. The method selects seed points from the existing results and uses a region
growing method based on cellular automata. It grows the lesion areas based on a local
neighborhood similarity in intensity. Over the eleven patients examined, some results
improved over the base case and show the efficiency of the proposed approach.
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Background
Multiple sclerosis (MS) is a disease of the central nervous system that causes dam-
age to the insulating myelin sheaths around the axons in the brain. MS causes the
immune system to attack these nerve fibers. The resulting demyelination interferes with
the nerve’s ability to communicate electrical signals. The damage manifests as a range
of cognitive and physical disabilities. The disease progresses at different rates in dif-
ferent people and can have periods of remission and relapse. Even in cases where the
myelin can re-grow, there is a permanent degradation in the transmission of electri-
cal impulses in the cell. It is important to be able to detect and evaluate the location
of, size of, and changes in MS lesions in the brain. The healthy brain contains white
matter (WM), grey matter (GM), and cerebrospinal fluid (CSF). While lesions can be
present in both WM and GM, they do not affect the CSF. Magnetic resonance (MR)
images provide a non-invasive way to examine the tissues of the brain and to detect MS
lesions.

MRI modalities

A number of magnetic resonance imaging (MRI) modalities are available for identifying
the tissues and any lesions present in the brain, and each provides different information.
The common MRI modalities for the identification of MS lesions are T1-weighted, T2-
weighted, PD-weighted, and fluid-attenuated inversion recovery (FLAIR), see Figure 1.
For all modalities, it is possible to achieve a high spatial resolution, with voxel cubes of
about 1 mm on the side. To save time in the acquisition of MRI sequences, it is also possi-
ble to have slice thickness from 3 to 7 mm and even gaps between slices.While the spatial
resolution is good, the brain contains complex structures in three dimensions. As a result,
the voxels in an MRI can be impacted by several tissue types within the volume. This par-
tial volume (PV) effect can cause problems in the identification of tissues. Fortunately, it
is also possible to collect multiple scans of the same patient using different acquisition
weights. Taken together, these scans provide anatomical and tissue information that is
valuable for identifying MS lesions.

Figure 1 Comparison of normal tissue and MS lesions. The differences between the modalities relate to
the method of image acquisition and manifest in the appearance of relative intensity of lesions compared to
healthy tissue.
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Lesion detection

In T2-weighted images, water appears with a high intensity of images. In T2 images,
lesions appear with higher (hyper-) intensities when compared to the surrounding WM.
Unfortunately, regions containing CSF also appear with high image intensities. As a result,
it becomes difficult to segment lesions in areas near the CSF-filled ventricles. Figure 1
shows an example of a normal brain and a brain with hyper-intense lesions visible. In
FLAIR images, a special weighting effectively removes the CSF fromT2-weighted images.
The result is an image where CSF appears with low intensity and lesions appear with a
high intensity. FLAIR images can be useful for identifying lesions in WM, even in the
periventricular region. Unfortunately, FLAIR imagery has a long acquisition time andmay
not be available for all patients. Proton-density-weighted images also show reduced inten-
sity of CSF compared to T2-weighted, though not as much as FLAIR. The advantage of
proton-density-weighted series is that they can be acquired together with T2 images in
the same sequence.
The task of identifying MS lesions in MRI is difficult and normally requires an

expert physician. The identification process is also time consuming and includes some
subjectivity in interpreting the voxel data. It requires the fusion of intensity data from dif-
ferent MRI modalities, anatomical understanding, and spatial thinking. Lesions can take
on many different appearances from ovoid to irregular and fuzzy to distinct. As a result,
the lesion segmentations provided by different physicians can vary in the number and
size of lesions identified. Fortunately, computerizedmethods for lesion identification have
been proposed to tackle this problem. These methods promise consistency and repeata-
bility, though they do not always agree with the expert segmentations. The methods take
different approaches to the problem of lesion segmentation and include a number of
steps, including pre- and post-processing. This article introduces a two-step approach to
improve the results of an existing automated segmentation method. It includes an anal-
ysis of the existing results which explains the rationale behind the proposed changes. It
presents the base segmentation results and improved results for the two modifications
performed on a set of 11 patients. It compares all the results to the expert segmentations
for each patient. This report concludes with a discussion of the techniques and results as
well as the perspectives on future improvements.

Methods
Segmentationmethods: state of the art

The detection of lesions in MRI scans generally requires a significant time investment
from a skilled physician. A number of automated methods seek to lessen this burden by
providing fast, accurate, and repeatable segmentation results. The goal of this project was
to improve upon the results of an existing segmentation method [1]. The current system
represents a significant investment of time and produces good results for a range of real
cases. Unfortunately, the process falls short of the abilities of an expert physician.
A number of general categories exist for automated segmentation of MS lesions in MRI

scans of the brain. Themethods can be divided based on the approach and grouped based
on their implementation [2]. There are three main types of segmentation approaches:
manual, semi-automatic, and automatic. Manual segmentation is the base method for
lesion segmentation. An expert physician examines different modalities to select the
lesion voxels. Unfortunately, the manual process is time consuming and somewhat
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subjective. Different experts can report different results and the same expert can provide
different results for the same data on subsequent evaluations. Even so, manual segmenta-
tions are considered the best results available and serve as the baseline for evaluating other
methods. The expert segmentations can be considered as a ‘silver standard’ since they are
not perfect representations of the ground truths but provide the best in vivo estimates
available. Computer-aided methods do provide some benefit to MS lesion segmentation.
Where experts can have difficulty combining information from multiple MRI modalities
and frommultiple adjacent slices, well-designed algorithms can efficiently blend this data.
As a result, it is interesting to pursue the development of semi-automated and automated
lesion segmentation methods.
Semi-automatic methods require some human input as the starting point for an auto-

mated processing step. This information could be a region of interest or a coarse selection
of lesion voxels. While semi-automatic methods can relieve some of the work from physi-
cians, they do require some input. The input can be as simple as a region of interest,
with suspected lesions. The user provides a rectangle around suspected lesions to narrow
the focus of the algorithm. The required input might be as detailed as a coarse painting
of lesion and non-lesion tissues. An algorithm could then use information based on the
appearance and features of these selections to grow the two regions without any other
knowledge. In any case, the automated portion of the segmentation is sensitive to the
quality of the input. Because they require some level of user input, the semi-automatic
methods may be unsuitable for large patient studies. Fully automatic methods require no
human interaction and can be grouped, at several levels, based on the method used to
perform the segmentation. In general, there are three main types of fully automated seg-
mentation schemes: data-driven methods, intelligent methods, and statistical methods.
The data-driven methods use thresholding and region growing to segment the lesions in
an image, like the watershed and grow-cut methods. The learning-based methods require
a training set and some feature extraction. These methods learn the characteristics of
lesions and then classify based on fuzzy rules or decision forests. The statistical methods
involve estimations of probability density functions. These methods are based on infer-
ence methods with some neighborhood or classification examples and include Markov
models and support vector machines. All have advantages and disadvantages in their use
and the results they provide (see [3] for more details).
Graph cuts (GC) is a method for finding themaximum a posteriori (MAP) estimate of

a binary image [4]. The method treats the image like a flow graph with two nodes, the
‘source’ and the ‘sink’. The source represents the object class in the image, in this case
the lesions. The sink represents the background, the non-lesion tissue. The other nodes
of the graph are the image voxel. A network of weighted and directed edges connect the
nodes in the graph. The GC makes use of regional and voxel-neighborhood information
to differentiate between the two classes.
The MAP estimate corresponds to the maximum flow through the node network.

Essentially, the method removes the inter-label connections in favor of intra-label con-
nections. The result is two sets of strongly connected nodes that correspond to the fore-
and background image elements.
The fuzzy c-mean seeks to cluster pixels into a number of groups that maximize inter-

cluster variability while minimizing intra-cluster variability [5,6]. Rather than a crisp or
hard classification, the fuzzy approach specifies the degree to which a pixel belongs to a
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given cluster. In this way, a pixel can belong to more than one cluster with some degree of
probability. Manual segmentation results varying from expert to expert and for repeated
evaluations by the same expert can be taken into account in this way.
Themean-shift is an unsupervised non-parametric clustering algorithm for image seg-

mentation [7]. The main idea of the mean-shift algorithm is to treat image points as
vectors in a probability density function. The dense regions in this space represent the
local maxima of some underlying distribution. The method performs a gradient ascent
optimization at each image point until convergence. The mean-shift vector gradually
decreases in length as it approaches the maximum. The resulting points are the modes
of the distribution. Nearby data points, within some window size, are considered mem-
bers of the same cluster. The clustering process depends on the selection of a kernel (local
neighborhood) and the specification of a window size and not some prior specification
of the number of clusters. The correct selection of a window size is the key for obtain-
ing good results. If the window size is too large, the image will be under-segmented and
regions will be lumped together. This can remove the fine details of small structures like
MS lesions. If the window size is too small, a significant amount of over-segmentation can
occur.
The k-nearest neighbor (k-NN) is a learning-based approach that attempts to classify

voxels based on the consensus of nearby examples [8]. A number of features can be
extracted for a voxel, including its appearance, location in the brain, and relation to its
neighbors. A labeled training set provides examples in feature space against which a test
voxel is compared. The advantage of this approach is that it needs to only locally estimate
the probability densities. The classification is based on the agreement of test examples
with similar features in some small neighborhood of examples. The method requires and
depends on good examples for good classification. Because MS lesions vary in size, shape,
and appearance, they will have widely different feature sets. Without a sufficient num-
ber of examples, it could be difficult to correctly classify lesions. Even in patients with
MS lesions, the actual number of lesion voxels may be far less than the number of vox-
els representing healthy tissue, perhaps one in a thousand. As with other learning-based
method, the large fraction of non-lesion voxels can bias the examples and hurt the lesion
detection rate.
Support vector machines (SVM) is a popular and widely used supervised learning algo-

rithm and has been applied to the MS lesion segmentation problem [9,10]. The method
extracts some features from examples of lesion and non-lesion voxels. It then attempts to
divide the two classes by a hyper-plane in the feature space. While there are many possi-
ble dividing planes, the method seeks the plane with the widest margin. Some methods
can employ kernels to re-map the feature space and allow for a non-linear division of the
classes. One problem with the SVM approach in MS lesion detection is the imbalance
between class representations. In general, the number of voxels that represent normal
brain tissue far exceeds the number of voxels that represent MS lesions. This can lead
to the over representation of non-lesions in the training. Unfortunately, it is difficult to
just exclude non-lesion examples, since any given example might represent important
information.
Statistical models generally focus on some estimation of the probability of a lesion

based on some mixture-models for normal tissue [11,12]. Generally, normal brain tis-
sue is divided into three classes, WM, GM, and CSF. Lesions are generally treated as an
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outlier to the normal tissue, although in some cases they can be treated as a separate class.
The statistical methods try to assign a classification based on the likelihood that a given
voxel is a lesion based on these models. The methods include neighborhood information
through Markov random field (MRF) or conditional random field (CRF). In these cases,
the nearby voxels contribute to the classification. These methods usually include some
probability parameter or threshold, beyond which an outlier is considered a lesion. The
existing method uses a hidden Markov chain (HMC) to incorporate neighborhood infor-
mation into the segmentation process. The main drawback is that we segment the whole
brain whereas the physician works locally. To be more efficient, we propose in this paper
to combine local and global approaches.

Algorithm evaluation

To evaluate the effectiveness of any improvements, it was necessary to specify a quanti-
tative metric for evaluating the progress of any proposed solutions. A number of metrics
exist for comparing the computerized and expert results. The metric of interest for these
comparisons is the similarity-index (SI).
The SI represents the amount of overlap in the identification regions provided by the

experts and the method of interest. It is computed as the ratio of twice the area of inter-
section of the regions to the sum of the areas of the regions. It reflects the relative number
of correctly segmented voxels to the false-positives and false-negatives in a single metric.

SI = 2(A ∩ B)

A + B (1)

Values for the SI will fall between 1 and 0, with values closer to 1.0 representing
better results and closer to 0.0 being the worse results. The goal is to improve the seg-
mentation approach in a way that would better match the physician’s segmentations
as measured by the level of correspondence between the results and penalized by the
difference. As the automated method is intended to assist the physicians in identify-
ing lesions, under-segmentation or false-negatives were a more important concern than
over-segmentation or false-positives. Physicians would have to search the whole brain
for any missed lesions, but could more easily reject the incorrectly identified lesions. It
was expected that the improvements of SI scores could include an increase in the num-
ber of true-positives as well as an increase both false-positives and false-negatives. The
addition of false-negatives would be slightly more troubling than the addition of false-
positives, but an increase in the detection of true-positives would supersede the two.
Beyond the overall scores, it was interesting to consider a per-lesion evaluation of the effi-
cacy of a given system. By comparing the labeled expert’s results to a set of automated
results, it was possible to evaluate over- and under-segmentation for each lesion. The
per-lesion results provided a quantitative way to evaluate the power of a given method
to discriminate the boundaries of lesions as well as its propensity for detecting spurious
lesions.
Our development uses hidden Markov chain model [1,13] as a starting point because

this approach obtained a very good score at grand challenge: 3D segmentation in the clinic
in MICCAI’08. This Markovian method computes lesion segmentations that generally
agree with expert results but under-estimates lesions in some places and over-estimates
in others. After some investigation, we propose a two-stage process (global on the whole
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brain then local on reduced areas) for improving the segmentation results. The two-
stage method proposed a change to the way the images were processed and then applied
a post-processing step to grow the lesions. A discussion of the theoretical basis for
the existing system and proposed improvements is provided in the Section ‘New local
detection model.’ The specific implementation details are presented in Section ‘Proposed
algorithm,’ whereas Section ‘Results’ will validate the approach for a set of patients. A
conclusion ends this paper, with some observations and potential avenues for future
work.

New local detectionmodel

The ‘GrowCut’ approach to image segmentation using a Cellular Automaton seemed to
be a good match for the local-region-growing idea to improve segmentation results [13].
Cellular Automata (CA) are discrete models both in space and time that govern the evo-
lution over time of a grid of cells. The cells exist in some finite set of states and have
simple deterministic rules that govern the change of these states at each time step. In the
case of image segmentation, it is possible to construct an update rule to grow regions
given some example seeds. The method is generally applied to semi-automatic segmen-
tation, with a user providing the seed points for the fore- and background. Since the
existing method provides a base segmentation, these results could be adapted to provide
seed points in a fully automatic way. Figure 2 shows a schematic representation of the
way the method progresses, from seed selection through growth iterations to the final
convergence.
The CA method operates on a set of voxels V in the MRI image. These voxels become

cells p in the lattice of the automaton. This relationship between voxels in the 3D image
and the corresponding cells is summarized as p ∈ V ⊆ Z

3.
The cellular automaton A is composed of the triplet A = (S,N , δ). S represents the

non-empty set of states within the automaton. N represents the neighborhood of points,
in this case the, six-neighborhood in three dimensions around a given cell. The transition
rule, δ, is the function which updates the states of the cells at each time step t. The state
of a given voxel, SV, is composed of three pieces of information and given by

(
lV, θV, �CV

)
.

The label of the current cell is given by lV and can have the integer values [−1, 1]. The
values −1, 0, and 1 correspond to the labels unknown, WM, and lesion, respectively. The
unknown label represents those cells which have yet been assigned a value or that are
specifically excluded from the analysis because, for example, they belong to a different tis-
sue class. The strength of the current label is given by θV with values given by θV∈ [0, 1].
The feature vector �C represents the properties of each voxel, in this case, a scalar
intensity.

Figure 2 Cellular Automata method for region growing.
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Region-growing algorithm

The following are the steps for region growing:

1. Select some seed points as representatives of the WM and lesions and assign them
the corresponding labels, strengths of 1.0, and their respective intensities.

2. Assign all other points an initial label, strength in the range [0, 1], and their
respective intensities.

3. Assign the non-WM and non-lesion points the unknown label and strengths of 1.0.
These points, identified as GM and CSF by the atlas, are ignored in the iterations.

4. Iterate over the points in the image using the evolution rule presented above to
update the strengths and labels of the cells.

5. Terminate the iteration when there are no additional changes (no label changes) or
after some maximum number of iterations.

In the first three steps, the values for each cell are initialized to a suitable value. Seed
points are normally selected by the user, but in a fully automated system the main pro-
cessing step provides these points. For these seed points, the lesion label is applied and
the corresponding label strength is set to the maximum value of 1.0. In a similar way,
points can be set as anti-seeds: those cells that could not be part of the lesion class because
they have very low intensities. These anti-seed points are given then non-lesion label with
the maximum label strength of 1.0. Some cells represent other tissue types and must be
ignored by the region-growing method. These cells are excluded by giving them maxi-
mum strengths and a label that indicates they should not be considered by the algorithm.
The remaining cells represent viable growth regions. The algorithm will attempt to con-
sume them for one label or the other. They must be given initial strength values in the
range [0, 1]. With the cells of the automaton initialized, the iteration process of step 4
begins. The new values at time t + 1 are determined based on an evolution rule for the
cells. The states for all cells in p at time t are given by Spt . These values are updated to the
next time-step t + 1 and given by Spt+1. In this way, the label at each time step, lVt and its
strength θV

t are updated to for each cell to lVt+1 and θV
t+1, respectively.

Evolution rule for cellular automaton

As mentioned above, the states of the cells in the Cellular Automaton evolve over time.
Through the application of the evolution rule, the cells move through a number of inter-
mediate states to a final stable set of states. The evolution rule describes how the states
are updated at each time step. At each step, the evolution rule iterates over the cells p in
the image. The cell label, lv, and the strength of that label, θv, are copied from the current
time step t to the next time step t + 1. The neighbors around the cell of interest are then
considered in turn. Each neighbor is compared to the cell of interest and attacks the cell,
attempting to modify its label and strength. The attack strength for the comparison and
the subsequent update in strength depend on a function g(x). This function can take a
number of forms but must bemonotonic decreasing and restricted to the range [0, 1]. The
monotonic decreasing requirement ensures that there are no local extrema in the function
that will cause repeated skirmishes. The decreasing requirement also ensures that larger
input differences result in smaller strength attacks. This is a necessary behavior, since only
neighbors with some close resemblance should have a strong influence on a given cell.
Restricting the range to [0, 1] ensures that the strength values will always be bounded and
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will not increase unexpectedly or uncontrollably. As seen in the algorithm, the input value
x is determined at each point by the L2 norm of the difference of the feature vectors C.
In the simplest case, the feature vectors are simply the voxel intensity values (Figure 3),
but it is easy to imagine this method applied to multiple modalities taken together to
form a collective feature vector. This evolution algorithm is then applied at each time
step in the overall method. The process of updating continues until convergence or some
pre-determined number of iterations.

Algorithm 1 Evolution rule for cellular automaton
for ∀p ∈ P do � For all cells p in the image

lV t+1 ← lV t � Preserve the cell label
θV t+1 ← θV t � and the label strength
for ∀q ∈ N( p) do � For all cells in the neighborhood of p

if g
(
‖�Cp − �Cq‖2

)
· θqt > θpt then � If the attacker is stronger

lpt+1 ← lqt � Preserve the cell label
θpt+1 ← g

(
‖�Cp − �Cq‖2

)
· θqt � and the label strength

end if
end for

end for

Proposed algorithm
Because the region-growing method based on CA operates at the local voxel level, it
should mimic the approach that a physician would take in segmenting lesions. The
method depends on a number of details that were important in the implementation. One
key detail was the selection of the weighting function for the automaton growth based
on the difference in appearance between the lesion voxels. The second major considera-
tion was the initialization method and selection of appropriate seed points for the grown
region. The third and related question was the scale at which to perform the processing.
These three factors contribute directly to the performance of themethod and are weighed
for their potential advantages and disadvantages.

Region-growingmethod

The region-growing method is summarized below:

1. Perform the normal analysis using an automated method to identify potential
lesions.

2. Compute region statistics for the WM and lesion voxels identified by the analysis.
3. Select WM seeds from the WM voxels with intensities below the regional mean for

the WM. Assign them the WM label (value 0) and strengths of 1.0.
4. Select the lesion seeds by accepting all lesion voxels in the region with intensities

above the lesion median. Assign them the lesion label (value 1) and strengths of 1.0.
5. Assign all other WM and lesion voxels their corresponding labels. Assign the WM

voxels strengths proportional to their Gaussian probability in the range [0, 1]. Give
the lesion voxels strengths of 0.0.
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6. Assign all non-WM and non-lesion voxels the unknown label (−1) and strengths
of 1.0. These are excluded from computation.

7. Perform the region-growing method by iterating over the cells as outlined.
8. Combine the regional results to recover the whole-brain results.

Because the method requires some seed points, it is necessary to perform some auto-
mated analysis before applying the region-growing method. The first step in the method
is to apply the HMC method [1] to sub-cubes in the brain and collect the results. The
sub-cube provide a more local region for making estimates of the seed appearances in
the brain. The second step computes the relevant statistics for the selecting the seeds.
The selection of suitable seed points is critical for good segmentation results. While this
method usually relies on a user to select these points, we made use of the existing seg-
mentation results and attempted to grow the regions from there. To select a suitable pool
of points, we considered the results provided by each sub-cube. By taking the results from
a cube, it was hoped that a sufficient number of lesion voxels would be present for a
good local estimate of the lesion class. Seed points were selected from the upper half of
the lesion intensities and potentially unwanted lesions might be excluded. By operating
at a regional rather than global level, the method hoped to avoid the regional differences
in tissue and lesion appearances across the brain. The seed points were selected from
an analysis of the intensities of the lesions and WM voxels within the sub-cube region
(Figure 2).

Results
In the manual segmentation process, experts identify areas that appear brighter in the
FLAIR MRI than the surrounding white matter. The locally bright points serve as a start-
ing point for lesion identification, and the expert examines a close neighborhood around
these points to complete the segmentation. They grow the lesions to some boundary with

Figure 3 Intensity thresholds for seed selection.
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a sufficient local intensity difference. Physicians incorporate anatomical and other infor-
mation to select the starting points; this method relies on the bright points identified by
the HMC method. The key element that this approach brings is the strategy of selecting
regions of interest and then growing them based on local information. In this way, the
method duplicates the strategy employed by expert physicians. Tomeasure the efficacy of
the method, results were computed for 11 patients using the base method, the sub-cube
method, and the region-growing method. The patients were selected at random from a
set of adult-patient data. Co-registered T1 and FLAIR MRI images with 1-mm voxel size
were used. Table 1 shows the number of lesion voxels identified by an expert physician and
show a range of 319 to 41,169 lesion voxels corresponding to a range of 0.319 to 41.169
cm3. These patients exhibited a range of lesions: from low to high loading and from uni-
form to non-uniform, which are located throughout the brain and with different sizes and
shapes.
The baseline results were based on the HMC method using T1-weighted MRI and a

robust atlas for tissue classification. The lesions were detected as outliers of the WM
distribution in the FLAIR image. Table 2 shows a summary of the results for the patients
in the study.
The common volume column indicates the number of voxels in common between the

expert and the automated segmentations. These voxels are the true-positives that have
been correctly detected by the system. The false-positive errors represent the voxels that
have been identified by the automated system but not by the expert, over-segmenting
the lesions. The false-negatives represent lesion voxels that were identified by the expert
but missed by the automated method, i.e., the false-negatives. As explained before, the SI
score represents the quality of overlap between the segmentation results of the two meth-
ods.While the scoreswere generally good, some of the results stand out as poor. Patients 4
and 11 had very high over-segmentation values that hurt their overall score. In both cases,
image artifacts have caused excessive false detections. In one case, the patient had some
form of tumor that was identified by the automated method as lesions. In the other case,
artifacts from the brain extraction left some non-brain voxels in the image. These voxels
were incorrectly identified as lesions. These artifacts were recognized and understood by
the expert and not included in the manual segmentation. Unfortunately, the method itself
cannot filter these results since they require actual understanding of the artifacts in these
images. In all other cases, the under-segmentation posed a more significant problem than

Table 1 Expert segmentation results

Patient Lesion voxels Lesion volume cm3

1 2, 421 2.421

2 7, 719 7.719

3 998 0.998

4 3, 026 3.026

5 319 0.319

6 5, 449 5.449

7 3, 539 3.539

8 5, 218 5.218

9 918 0.918

10 41, 169 41.169

11 619 0.619
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Table 2 Base segmentation results using HMCmethod

Patient Correct False-positive False-negative SI score

1 2, 421 763 1, 821 0.652

2 7, 719 778 5, 621 0.707

3 998 373 1, 070 0.580

4 3, 026 5, 248 941 0.494

5 319 100 285 0.624

6 5, 449 644 2, 587 0.771

7 3, 539 605 1, 744 0.751

8 5, 218 70 1, 178 0.893

9 918 393 1, 380 0.509

10 41, 169 50 65, 953 0.555

11 619 1, 311 327 0.430

the over-segmentation. Patient 10 exhibited an exceptionally high lesion load and showed
a significant amount of under-segmentation in the automated results. This could be, in
part, due to the assumption that the lesions represent only the most significant outliers to
a Gaussian distribution. Because the patients represent a wide range of lesion loads and
appearances, they represent an interesting test group for the method.
Using a set of smaller sub-regions based on the HMC method, the sub-cube method

produced an improvement over the base case. As can be seen in Table 3, the results while
generally better weremixed. The approach performsmuch better in some cases andmuch
worse in others. In nearly all cases, the method provided a better detection rate of the
individual lesions and, in some cases, added a significant number of spurious detection
points as well.
Using the seed points selected from the results of theHMCmethod, the region-growing

method produced an interesting set of results. As can be seen in Table 4, the results were
somewhat mixed, performing much better in some cases and much worse in others. In
nearly all cases, the method provided a better hit rate on the lesions, even if it also added
a significant number of spurious detection points as well.
As is apparent in the table, there are some shortcomings with the region-growing

process. The method provides less common segmentation and correspondingly greater
under-segmentation than the Markovian sub-cube method. Fortunately, it captures the
lesion voxels better than the base method. But it also provides more over-segmentation:

Table 3 Sub-cubemethod results

Patient Correct False-positive False-negative SI score Percentage of change from base

1 2, 966 1, 569 1, 276 0.676 3.7

2 8, 909 1, 095 4, 431 0.763 8.0

3 897 483 1, 171 0.520 −10.4

4 3, 387 4, 154 580 0.589 19.1

5 371 225 233 0.618 −0.9

6 6, 409 1, 497 1, 627 0.804 4.2

7 4, 459 2, 101 824 0.753 0.3

8 5, 866 397 530 0.927 3.8

9 1, 514 1, 107 784 0.616 21.0

10 44, 944 238 62, 178 0.590 6.3

11 730 2, 811 216 0.325 −24.4
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Table 4 Region-growingmethod results

Patient Correct False-positive False-negative SI score Percentage of change from base

1 2, 779 1, 487 1, 463 0.653 0.2

2 8, 301 1, 044 5, 039 0.732 3.5

3 1, 194 1, 370 874 0.516 −11.2

4 3, 205 3, 797 762 0.584 18.2

5 352 213 252 0.602 −3.4

6 6, 001 1, 446 2, 035 0.775 0.5

7 4, 247 1, 885 1, 036 0.744 −0.9

8 5, 319 374 1, 177 0.880 −1.5

9 1, 446 1, 002 852 0.609 19.8

10 39, 212 229 67, 910 0.535 −3.6

11 703 2, 657 243 0.327 −24.1

less than the sub-cubes but more than the base. The results of this method fall between
those of the base and sub-cube methods. We might expect the large over-segmentation,
since the algorithm greedily accepts voxels of similar appearance. We would also expect
the results to depend on the selection of the seed points. The details of the imple-
mentation also introduced some additional unforeseen impacts on the quality of the
segmentation results
Figure 4 shows an example of the segmentation results generated using the different

approaches. The first panel shows FLAIR data with some light lesion regions visible. The
next three panels show the results from the various methods evaluated against the expert
segmentation: the base case, the sub-cube method, and the region-growing method. The
red voxels shown across the results represent those missed by the various methods, but
identified by the physician: these are the false-negatives. The purple voxels in the results
are those not identified by the expert, but flagged as lesion voxels by the corresponding
method, i.e., the false-positives. The green voxels are those identified as lesions by the
expert and the corresponding method, or the true-positives. The second panel shows
the segmentation results using the base processing method. The lesion in the upper left

Figure 4 Segmentation results (left to right) the MRI data, base case, sub-cubemethod, and region-
growingmethod. The red voxels shown across the results represent those missed by the various methods
but identified by the physician: these are the false-negatives. The purple voxels in the results are those not
identified by the expert but flagged as lesion voxels by the correspondingmethod, i.e., the false-positives. The
green voxels are those identified as lesions by the expert and the correspondingmethod or the true-positives.
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corner of the image was missed by the base analysis and appears red in this slice. The red
voxels reflect the considerable amount of false-negatives visible in this panel. The green
shows some correctly segmented voxels, while the few purple spots denote a small amount
of false-positives. The third panel in the set shows the evaluation of the results of the
sub-cube method for the same patient. The results show a improvement in the coverage
of the lesions with some false-negatives in the base case correctly identified by the sub-
cube method. The lesion in the upper left, which was not previously identified, has been
detected with the sub-cube method. There are some false-negatives shown near the mid-
dle of the panel. The combination of increased true-positives and decreased false-negative
offsets the additional false-positives, the sub-cube method scores a higher SI compared
to the base case. The method also identifies a previously overlooked lesion, representing
a significant improvement. The fourth panel shows the results of the region-growing
method. Compared to the base case, it shows some of the same improvements as the
sub-cube method. Unfortunately, it shows slightly worse performance than the sub-cube
method. Some voxels capture by the sub-cubes are missed, giving it a lower SI score. This
places the results of the region-growingmethod slightly lower than the sub-cube method.

Conclusions
In this paper, we propose a new method based simultaneously on local multimodal
Markovian segmentation coupled with cellular automata to detect lesion in MRI with
multiple modalities, as close as possible as the physician does. We propose a post-
processing stage to improve the segmentation results of a process based on Markovian
approach. We used two different strategies to improve the whole-brain tissue classifica-
tion and lesion detection. The first strategy leverages the current processing system at a
granularity finer than the whole brain to detect lesions at a local level : the brain MRI
cube (10243 voxels) is divided into smaller ones (643 voxels), where a Markovian segmen-
tation is processed. This reflects the way that a physician considers only a part of the
brain at a time. We observed that this approach better captures the local lesion proper-
ties and produces encouraging results, with a general improvement in the detection rate
of lesions. The second method dives deeper and looks at the individual voxel level. In
this case, we are forced to give up Bayesian detection based on Markov assumption due
to the weak number of samples observed locally in a narrow neighborhood around the
lesion. Just as a physician might look more closely at a lesion, it considers the local neigh-
borhood around a lesion detection. We select seed points from the existing results and
use a region-growing method based on cellular automata to grow the lesion areas based
on a local neighborhood similarity in intensity. The method does hold promise in finding
more accurately identifying the size and shape of lesion detections as a physician does and
improving the results of an automated system to expect the lesion load of the whole brain.
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